HDU4185(KB10-G 二分图最大匹配)

本文介绍了一种针对油面捞取问题的算法解决方案。通过构建一个最大匹配问题,该算法能够在给定的油面分布地图上找出最大的可捞取油面区域数量。使用匈牙利算法来解决这一二分图匹配问题。

Oil Skimming

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2917    Accepted Submission(s): 1210


Problem Description

Thanks to a certain "green" resources company, there is a new profitable industry of oil skimming. There are large slicks of crude oil floating in the Gulf of Mexico just waiting to be scooped up by enterprising oil barons. One such oil baron has a special plane that can skim the surface of the water collecting oil on the water's surface. However, each scoop covers a 10m by 20m rectangle (going either east/west or north/south). It also requires that the rectangle be completely covered in oil, otherwise the product is contaminated by pure ocean water and thus unprofitable! Given a map of an oil slick, the oil baron would like you to compute the maximum number of scoops that may be extracted. The map is an NxN grid where each cell represents a 10m square of water, and each cell is marked as either being covered in oil or pure water.
 


Input

The input starts with an integer K (1 <= K <= 100) indicating the number of cases. Each case starts with an integer N (1 <= N <= 600) indicating the size of the square grid. Each of the following N lines contains N characters that represent the cells of a row in the grid. A character of '#' represents an oily cell, and a character of '.' represents a pure water cell.
 


Output

For each case, one line should be produced, formatted exactly as follows: "Case X: M" where X is the case number (starting from 1) and M is the maximum number of scoops of oil that may be extracted.
 


Sample Input

1 6 ...... .##... .##... ....#. ....## ......
 


Sample Output

Case 1: 3
 


Source

 
每个‘#’向其左边和上边的‘#’连边,然后跑最大匹配
//2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100000;
const int M = 5000000;
int head[N], tot;
struct Edge{
    int to, next;
}edge[M];

void init(){
    tot = 0;
    memset(head, -1, sizeof(head));
}

void add_edge(int u, int v){
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;

    edge[tot].to = u;
    edge[tot].next = head[v];
    head[v] = tot++;
}

int n;
int matching[N];
int check[N];
string G[700];
int id[700][700], idcnt;

bool dfs(int u){
    for(int i =  head[u]; i != -1; i = edge[i].next){
        int v = edge[i].to;
        if(!check[v]){//要求不在交替路
            check[v] = 1;//放入交替路
            if(matching[v] == -1 || dfs(matching[v])){
                //如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
                matching[u] = v;
                matching[v] = u;
                return true;
            }
        }
    }
    return false;//不存在增广路
}

//hungarian: 二分图最大匹配匈牙利算法
//input: null
//output: ans 最大匹配数
int hungarian(){
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    for(int u = 1; u < idcnt; u++){
        if(matching[u] == -1){
            memset(check, 0, sizeof(check));
            if(dfs(u))
              ans++;
        }
    }
    return ans;
}

int main()
{
    std::ios::sync_with_stdio(false);
    //freopen("inputG.txt", "r", stdin);
    int T, kase = 0;
    cin>>T;
    while(T--){
        cin>>n;
        init();
        idcnt = 1;
        for(int i = 0; i < n; i++){
              cin>>G[i];
            for(int j = 0; j < n; j++){
                if(G[i][j] == '#'){
                    id[i][j] = idcnt++;
                    if(i-1>=0 && G[i-1][j] == '#')
                          add_edge(id[i][j], id[i-1][j]);
                    if(j-1>=0 && G[i][j-1] == '#')
                          add_edge(id[i][j], id[i][j-1]);
                }
            }
        }
        cout<<"Case "<<++kase<<": "<<hungarian()<<endl;
    }

    return 0;
}

 

转载于:https://www.cnblogs.com/Penn000/p/7434873.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值