poj Mayor's posters

本文讨论了如何使用线段树解决在Bytetown城市中选举海报放置问题,通过规则限制和线段树操作,计算最终可见的海报数量。详细介绍了输入输出格式、算法实现和实例解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Mayor's posters

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 29495 Accepted: 8531

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

 
分析:线段树:成段替换,查询所有出现的数据种类。PS:离散化预处理,注意点和边的区别
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int col[1 << 17];
int ans;

typedef struct S {
    int pos, id;
} NODE;
NODE node[20010];

bool cmp(NODE a, NODE b) {
    return a.pos < b.pos;
}
int ls[20010];
int vis[40010];

void pushdown(int rt, int len) {
    if (col[rt] != -1) {
        col[rt << 1] = col[rt << 1 | 1] = col[rt];
        col[rt] = -1;
    }
}

void update(int L, int R, int c, int l, int r, int rt) {
    if (L <= l && R >= r) {
        col[rt] = c;
        return;
    }
    pushdown(rt, r - l + 1);
    int m = (l + r) >> 1;
    if (L <= m)
        update(L, R, c, lson);
    if (R > m)
        update(L, R, c, rson);
}

void query(int l, int r, int rt) {
    if (col[rt] != -1) {
        if (!vis[col[rt]]) {
            vis[col[rt]] = 1;
            ++ans;
        }
        return;
    }
    if (l == r)
        return;
    int m = (l + r) >> 1;
    query(lson);
    query(rson);
}

int main() {
    int T, i, j, n, max;
    scanf("%d", &T);
    while (T--) {
        scanf("%d", &n);
        memset(col, -1, sizeof (col));
        memset(vis,0,sizeof(vis));
        for (i = 0; i < n; ++i) {
            node[i << 1].id = i << 1;
            scanf("%d", &node[i << 1].pos);
            node[i << 1 | 1].id = i << 1 | 1;
            scanf("%d", &node[i << 1 | 1].pos);
        }
        sort(node, node + n + n, cmp);
        ls[node[0].id] = 0;
        for (i = 1; i < n + n; ++i) {
            if (node[i].pos == node[i - 1].pos) {
                ls[node[i].id] = ls[node[i - 1].id];
            } else if (node[i].pos == node[i - 1].pos + 1) {
                ls[node[i].id] = ls[node[i - 1].id] + 1;
            } else {
                ls[node[i].id] = ls[node[i - 1].id] + 2;
            }
        }
        max = ls[node[n + n - 1].id];
        for (i = 0; i < n; ++i) {
            update(ls[i << 1], ls[i << 1 | 1], i, 0, max, 1);
        }
        ans = 0;
        query(0, max, 1);
        printf("%d\n", ans);
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/baidongtan/archive/2012/10/09/2717032.html

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值