bzoj 2301: [HAOI2011]Problem b mobius反演 RE

http://www.lydsy.com/JudgeOnline/problem.php?id=2301

设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数。

设F(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) % i == 0的个数,很简单的公式就是floor(n / i) * floor(m / i)

可知gcd(x, y) = k * i也属于F(i)的范围,所以可以反演得到f(i)的表达式。

算一次复杂度O(n),而且询问区间的时候要拆分成4个区间来容斥,所以总复杂度会达到4 * 5e4 * 5e4 = 1e10

 

技巧:(和省赛E题一样的技巧,无奈省赛一直卡E)

注意到,floor(n / i)的取值,很多是相同的,比如,7 / 2 = 7 / 3

7 / 4 = 7 / 5 = 7 / 6 = 7 / 7,注意到,值是n / i的,起点是i,终点是n / floor(n / i)

那么可以把相同的放在一起了,虽然是要两个相同才放一起,就是n / i和m / i,但是还是很好写的。

注意不要用cout,莫名re,re一小时

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;


#include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
#include <time.h>
const int maxn = 5e4 + 20;
int prime[maxn];//这个记得用int,他保存的是质数,可以不用开maxn那么大
bool check[maxn];
int total;
int mu[maxn];
void initprime() {
    mu[1] = 1; //固定的
    for (int i = 2; i <= maxn - 20; i++) {
        if (!check[i]) { //是质数了
            prime[++total] = i; //只能这样记录,因为后面要用
            mu[i] = -1; //质因数分解个数为奇数
        }
        for (int j = 1; j <= total; j++) { //质数或者合数都进行的
            if (i * prime[j] > maxn - 20) break;
            check[i * prime[j]] = 1;
            if (i % prime[j] == 0) {
                mu[prime[j] * i] = 0;
                break;
            }
//            if (prime[j] * i > maxn - 20) while(1);
            mu[prime[j] * i] = -mu[i];
            //关键,使得它只被最小的质数筛去。例如i等于6的时候。
            //当时的质数只有2,3,5。6和2结合筛去了12,就break了
            //18留下等9的时候,9*2=18筛去
        }
    }
}
int sumMu[maxn];
LL ask(int n, int m, int k) {
    if (k == 0) return 0;
    n /= k;
    m /= k;
    LL ans = 0;
    int mi = min(n, m);
    int nxt;
    for (int i = 1; i <= mi; i = nxt + 1) {
        nxt = min((n / (n / i)), (m / (m / i)));
        ans += (sumMu[nxt] - sumMu[i - 1]) * 1LL * (n / i) * (m / i);
    }
    return ans;
}
void work() {
    int a, b, c, d, k;
//    cin >> a >> b >> c >> d >> k;
    scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
    LL ans = ask(b, d, k) - ask(d, a - 1, k) - ask(c - 1, b, k) + ask(a - 1, c - 1, k);
    printf("%lld\n", ans);
//    cout << ans << endl;
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    initprime();
    for (int i = 1; i <= maxn - 20; ++i) {
        sumMu[i] = sumMu[i - 1] + mu[i];
    }
    int t;
    scanf("%d", &t);
    while (t--) work();
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/liuweimingcprogram/p/6901676.html

标题基于Python的自主学习系统后端设计与实现AI更换标题第1章引言介绍自主学习系统的研究背景、意义、现状以及本文的研究方法和创新点。1.1研究背景与意义阐述自主学习系统在教育技术领域的重要性和应用价值。1.2国内外研究现状分析国内外在自主学习系统后端技术方面的研究进展。1.3研究方法与创新点概述本文采用Python技术栈的设计方法和系统创新点。第2章相关理论与技术总结自主学习系统后端开发的相关理论和技术基础。2.1自主学习系统理论阐述自主学习系统的定义、特征和理论基础。2.2Python后端技术栈介绍DjangoFlask等Python后端框架及其适用场景。2.3数据库技术讨论关系型和非关系型数据库在系统中的应用方案。第3章系统设计与实现详细介绍自主学习系统后端的设计方案和实现过程。3.1系统架构设计提出基于微服务的系统架构设计方案。3.2核心模块设计详细说明用户管理、学习资源管理、进度跟踪等核心模块设计。3.3关键技术实现阐述个性化推荐算法、学习行为分析等关键技术的实现。第4章系统测试与评估对系统进行功能测试和性能评估。4.1测试环境与方法介绍测试环境配置和采用的测试方法。4.2功能测试结果展示各功能模块的测试结果和问题修复情况。4.3性能评估分析分析系统在高并发等场景下的性能表现。第5章结论与展望总结研究成果并提出未来改进方向。5.1研究结论概括系统设计的主要成果和技术创新。5.2未来展望指出系统局限性并提出后续优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值