Term Weighting

本文介绍了文本处理中词项权重(Term weighting)的概念及其计算方法,重点讲解了TF-IDF模型,并探讨了如何通过词项权重提取短文本的核心词汇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对文本分词后,接下来需要对分词后的每个term计算一个权重,重要的term应该给与更高的权重。举例来说,“什么产品对减肥帮助最大?”的term weighting结果可能是: “什么 0.1,产品 0.5,对 0.1,减肥 0.8,帮助 0.3,最大 0.2”。Term weighting在文本检索,文本相关性,核心词提取等任务中都有重要作用。我们可以把这个拿来进行对我们构建的词向量进行加权。

Term weighting的打分公式一般由三部分组成:local,global和normalization。即
TermWeight=L_{i,j}、 G_i、 N_j。L_{i,j}是term i在document j中的local weight,G_i是term i的global weight,N_j是document j的归一化因子。

常见的local,global,normalization weight公式有:

 

Local weight formulas:

 

Global weight formulas:

 

 

Normalization factors:

 

 

TF-IDF:

Tf-Idf是一种最常见的term weighting方法。在上面的公式体系里,Tf-Idf的local weight是FREQ,glocal weight是IDFB,normalization是None。tf是词频,表示这个词出现的次数。df是文档频率,表示这个词在多少个文档中出现。idf则是逆文档频率,idf=log(TD/df),TD表示总文档数。Tf-Idf在很多场合都很有效,但缺点也比较明显,以“词频”度量重要性,不够全面,譬如在搜索广告的关键词匹配时就不够用。

 

核心词、关键词提取
  • 短文本串的核心词提取。对短文本串分词后,利用上面介绍的term weighting方法,获取term weight后,取一定的阈值,就可以提取出短文本串的核心词。

 

转载于:https://www.cnblogs.com/callyblog/p/9056151.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值