【codeforces 466D】Increase Sequence

本文详细解析 CodeForces 466D 的解题思路,利用动态规划方法解决如何通过调整指定区间内的元素来实现整体数值的递增,最终达到目标值的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目链接】:http://codeforces.com/problemset/problem/466/D

【题意】

给你n个数字;
让你选择若干个区间;
且这些区间[li,ri];
左端点不能一样;
右端点也不能有一样的;
你能把这些区间内的元素递增1;
问你把所有的n个元素都变成h有多少种方案;.

【题解】

设dp[i][j];
设前i个数字都已经变成h,且有j个区间的左端点没有被匹配的方案数;
每个位置都有些一些选择;
‘-’ 什么都不放
‘]’ 放一个右端点在这个位置;
‘][‘放一个右端点在这,同时立刻开始一个新的区间
‘[]’放一个左端点然后立刻放一个右端点;
‘[‘放一个左端点在这;
①对于a[i]+j==h
则第i个位置有两种选择;
1.’[’ ->则dp[i][j] += dp[i-1][j-1]
2.’-‘->则dp[i][j] += dp[i-1][j];
其他的可以自己试试,会发现不行的
②对于a[i]+j==h-1
则第i个位置有3个选择
1.if (j > 0) ‘][‘->则dp[i][j]+=dp[i-1][j]*j; // 这里的j表示和之前的j个左端点中的某一个匹配;
2.’]’ dp[i][j] += dp[i-1][j+1]*(j+1);//和之前的j+1个左端点中的某一个匹配;
3.’[]’ dp[i][j] += dp[i-1][j];
…其他的都不行的;
最后输出dp[n][0]就好;
③a[i]+j==其他
没有方案;

【Number Of WA

3(判断dp[i][j]>=MOD之后,要一直减MOD,不能只判断一个if);

【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("F:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0)

typedef pair<int,int> pii;
typedef pair<LL,LL> pll;

const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 2000+100;
const LL MOD = 1e9+7;

int n,h;
LL dp[N][N],a[N];

void add(LL &a,LL b){
    a = a+b;
    while (a>=MOD) a-=MOD;
}

int main(){
    //Open();
    Close();
    cin >> n >> h;
    rep1(i,1,n){
        cin >> a[i];
    }
    dp[1][0] = ((h==a[1])||(h==a[1]+1))?1:0;
    dp[1][1] = (h==a[1]+1)?1:0;
    rep1(i,2,n){
        rep1(j,max((long long) 0,h-a[i]-1),min((long long)i,h-a[i])){
            if (a[i]+j==h){
                if (j) add(dp[i][j],dp[i-1][j-1]);// [
                add(dp[i][j],dp[i-1][j]);// -
                //][ x
                // ] x
                // [] x
            }
            if (a[i]+j+1==h){
                    //[ x
                    // - x
                if (j > 0) add(dp[i][j],dp[i-1][j]*j);//][
                add(dp[i][j],dp[i-1][j+1]*(j+1));// ]
                add(dp[i][j],dp[i-1][j]);//[]
            }
        }
    }
    cout << dp[n][0] << endl;
    return 0;
}

转载于:https://www.cnblogs.com/AWCXV/p/7626252.html

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值