hdu4549矩阵快速幂+费马小定理

本文介绍了一种利用矩阵快速幂结合费马小定理解决特定数学问题的方法。通过实例演示如何构建转移矩阵,并应用快速幂技巧高效计算大指数下的矩阵乘法,最终求解斐波那契数列等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转移矩阵很容易求就是|0  1|,第一项是|0|

                            |1  1|             |1|

然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1(这东西贡献了我8次wa)

对矩阵进行取余的时候余mod-1,因为矩阵求出来是要当作幂的,就是a^b%p=a^(b%(p-1))%p

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

const double g=10.0,eps=1e-9;
const int N=10+5,maxn=1<<10+5,inf=0x3f3f3f3f;

struct Node{
   ll row,col;
   ll a[N][N];
};
Node mul(Node x,Node y)
{
    Node ans;
    ans.row=x.row,ans.col=y.col;
    memset(ans.a,0,sizeof ans.a);
    for(ll i=0;i<x.row;i++)
        for(ll j=0;j<x.col;j++)
            for(ll k=0;k<y.col;k++)
                ans.a[i][k]=(ans.a[i][k]+x.a[i][j]*y.a[j][k])%(mod-1);
    return ans;
}
Node quick_mul(Node x,ll n)
{
    Node ans;
    ans.row=x.row,ans.col=x.col;
    memset(ans.a,0,sizeof ans.a);
    for(ll i=0;i<ans.col;i++)ans.a[i][i]=1;
    while(n){
        if(n&1)ans=mul(ans,x);
        x=mul(x,x);
        n>>=1;
    }
    return ans;
}
ll mmul(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1)ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans%mod;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
 //   cout<<setiosflags(ios::fixed)<<setprecision(2);
    ll x,y,n;
    while(cin>>x>>y>>n){
        if(n==0)
        {
            cout<<x<<endl;
            continue;
        }
        Node A;
        A.row=2,A.col=2;
        A.a[0][0]=0,A.a[0][1]=1;
        A.a[1][0]=1,A.a[1][1]=1;
        A=quick_mul(A,n-1);
        Node B;
        B.row=2,B.col=1;
        B.a[0][0]=0,B.a[1][0]=1;
        B=mul(A,B);
        ll ans=mmul(x,B.a[0][0])*mmul(y,B.a[1][0])%mod;
        cout<<ans<<endl;
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/acjiumeng/p/6882097.html

内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气流速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证与误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气流速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值