POJ2533-Longest Ordered Subsequence

求解最长递增子序列
本文介绍了一种从后向前动态规划的方法来求解给定数列的最长递增子序列长度。通过实例演示了如何优化算法以避免冗余计算。

 

描述:

  A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1a2, ..., aN) be any sequence (ai1ai2,..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8). 

  Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

  The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

  Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

代码:

  求最长递增子序列的长度。从后向前动规,找当前数之后的大于当前数且动规值最大的值(即当前数能够连接成的最长序列的长度),动规值+1赋给当前值。充分体现了动态规划解决冗余的特点。

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<stdlib.h>
#include <math.h>
using namespace std;
#define N 1005

int main(){
    int n,temp,dp[N],seq[N],count,flag,max;
    scanf("%d",&n);
    count=0;
    for( int i=0;i<n;i++ )
        scanf("%d",&seq[i]);
    max=0;
    for( int i=n-1;i>=0;i-- ){
        dp[i]=1;
        for( int j=i+1;j<n;j++ ){
            if( seq[j]>seq[i] && dp[i]<dp[j]+1 )
                dp[i]=dp[j]+1;
        }
        max=(max<dp[i])?dp[i]:max;
    }
    printf("%d\n",max);
    return 0;
}

 

转载于:https://www.cnblogs.com/lucio_yz/p/4719640.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值