POJ2533-Longest Ordered Subsequence(dp)

本文介绍了解决POJ2533问题的方法,即寻找给定序列中最长的升序子序列。通过动态规划算法实现,详细解析了其核心思想与步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

POJ2533 原题链接:http://poj.org/problem?id=2533

Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 55259 Accepted: 24781

Description

A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1a2, ...,  aN) be any sequence ( ai1ai2, ...,  aiK), where 1 <=  i1 <  i2 < ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

题目大意:最长上升子序列,给出一个序列,求出最长的升序子序列;

思路:dp。很简单,一个大循环i从1到n,一个从小循环j从1到i,大循环找出最差解,j循环里面优化结果

代码如下:

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
int main()
{
    int a[1001];
    int dp[1001];
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i];
    }
    for(int i=1;i<=n;i++)
    {
        dp[i]=1;//最坏的情况
        for(int j=1;j<i;j++)
        {
            if(a[j]<a[i])
            {
                dp[i]=max(dp[i],dp[j]+1);//优化结果
            }
        }
    }
    int Max=1;
    for(int i=1;i<=n;i++)
    {
        if (dp[i]>Max)
            Max=dp[i];
    }
    cout<<Max<<endl;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值