POJ2533 原题链接:http://poj.org/problem?id=2533
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 55259 | Accepted: 24781 |
Description
A numeric sequence of
ai is ordered if
a1 <
a2 < ... <
aN. Let the subsequence of the given numeric sequence (
a1,
a2, ...,
aN) be any sequence (
ai1,
ai2, ...,
aiK), where 1 <=
i1 <
i2 < ... <
iK <=
N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
题目大意:最长上升子序列,给出一个序列,求出最长的升序子序列;
思路:dp。很简单,一个大循环i从1到n,一个从小循环j从1到i,大循环找出最差解,j循环里面优化结果
代码如下:
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
int main()
{
int a[1001];
int dp[1001];
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
dp[i]=1;//最坏的情况
for(int j=1;j<i;j++)
{
if(a[j]<a[i])
{
dp[i]=max(dp[i],dp[j]+1);//优化结果
}
}
}
int Max=1;
for(int i=1;i<=n;i++)
{
if (dp[i]>Max)
Max=dp[i];
}
cout<<Max<<endl;
}