256. Paint House房屋染色

本文介绍了一种使用动态规划算法解决最小成本粉刷房屋问题的方法。通过递推公式找到每一步的最小成本,并最终得到整体的最低粉刷成本。

[抄题]:

There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x 3 cost matrix. For example, costs[0][0] is the cost of painting house 0 with color red; costs[1][2] is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.

 [暴力解法]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

以为要用i , j的二维矩阵:就3种情况,枚举所有情况就行了

[一句话思路]:

求和取前一步最小值,从而实现步步最小

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. 理解过程:把所有值都累加到nums[n]中

[二刷]:

[三刷]:

[四刷]:

[五刷]:

  [五分钟肉眼debug的结果]:

[总结]:

 求和类型的三步dp,套用坐标型模板

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[关键模板化代码]:

标准格式i = 0,i < n,return f[n - 1]

for (int i = 1; i < n; i++) {
            costs[i][0] += Math.min(costs[i - 1][1], costs[i - 1][2]);
            costs[i][1] += Math.min(costs[i - 1][0], costs[i - 1][2]);
            costs[i][2] += Math.min(costs[i - 1][0], costs[i - 1][1]);
        }
        //answer
        return Math.min(costs[n - 1][0], Math.min(costs[n - 1][1],costs[n - 1][2]));
View Code

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

265. Paint House II 数学问题,感觉并没有什么联系

 [代码风格] :

public class Solution {
    /**
     * @param costs: n x 3 cost matrix
     * @return: An integer, the minimum cost to paint all houses
     */
    public int minCost(int[][] costs) {
        //corner case
        if (costs.length == 0 || costs[0].length == 0) {
            return 0;
        }
        //get sum
        int n = costs.length;
        for (int i = 1; i < n; i++) {
            costs[i][0] += Math.min(costs[i - 1][1], costs[i - 1][2]);
            costs[i][1] += Math.min(costs[i - 1][0], costs[i - 1][2]);
            costs[i][2] += Math.min(costs[i - 1][0], costs[i - 1][1]);
        }
        //answer
        return Math.min(costs[n - 1][0], Math.min(costs[n - 1][1],costs[n - 1][2]));
    }
}
View Code

 

转载于:https://www.cnblogs.com/immiao0319/p/8557361.html

B. Array Recoloring time limit per test2 seconds memory limit per test256 megabytes You are given an integer array a of size n . Initially, all elements of the array are colored red. You have to choose exactly k elements of the array and paint them blue. Then, while there is at least one red element, you have to select any red element with a blue neighbor and make it blue. The cost of painting the array is defined as the sum of the first k chosen elements and the last painted element. Your task is to calculate the maximum possible cost of painting for the given array. Input The first line contains a single integer t (1≤t≤103 ) — the number of test cases. The first line of each test case contains two integers n and k (2≤n≤5000 ; 1≤k<n ). The second line contains n integers a1,a2,…,an (1≤ai≤109 ). Additional constraint on the input: the sum of n over all test cases doesn't exceed 5000 . Output For each test case, print a single integer — the maximum possible cost of painting for the given array. Example InputCopy 3 3 1 1 2 3 5 2 4 2 3 1 3 4 3 2 2 2 2 OutputCopy 5 10 8 Note In the first example, you can initially color the 2 -nd element, and then color the elements in the order 1,3 . Then the cost of painting is equal to 2+3=5 . In the second example, you can initially color the elements 1 and 5 , and then color the elements in the order 2,4,3 . Then the cost of painting is equal to 4+3+3=10 . In the third example, you can initially color the elements 2,3,4 , and then color the 1 -st element. Then the cost of painting is equal to 2+2+2+2=8 . 用cpp解决
03-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值