【AtCoder ARC076】F Exhausted? 霍尔定理+线段树

探讨了N个人抢M个椅子的问题,并通过构建二分图及应用霍尔定理来寻找最大匹配数,最终利用扫描线算法高效解决该问题。

题意

N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人


$i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max(|X|-\omega(X))$,$X$为人的集合,$\omega(X)$可以表示为$[1,l] \cup[r,M]$,所以可以枚举$\omega(X)$也就是$(l,r)$,求出最大的$|X|$,也就是满足$L_i\le l \land r \le R_i$的$i$的数量,也就是平面上以$(l,r)$为原点第二象限的点的数量,可以利用扫描线算法解决

时间复杂度$O(n\log n)$

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 200005;
int n, m, L, R;
vector<int> val[N];
int lch[N << 2], rch[N << 2], Max[N << 2], lazy[N << 2];
inline void update(int x, int v) {
    lazy[x] += v; Max[x] += v;
}
inline void pushup(int x) {Max[x] = max(Max[x << 1], Max[x << 1 | 1]);}
inline void pushdown(int x) {
    if(lazy[x]) {
        update(x << 1, lazy[x]); update(x << 1 | 1, lazy[x]); lazy[x] = 0; 
    }
}
void build(int x,int l, int r) {
    lch[x] = l; rch[x] = r;
    if(l == r) {
        Max[x] = l; return;
    }
    int mid = (l + r) / 2;
    build(x << 1, l, mid); build(x << 1 | 1, mid + 1, r);
    pushup(x);
}
void update(int x, int l, int r, int v) {
    if(l <= lch[x] && rch[x] <= r) {
        update(x, v); return;
    }
    pushdown(x);
    int mid = (lch[x] + rch[x]) / 2;
    if(r <= mid) update(x << 1, l, r, v);
    else if(l > mid) update(x << 1 | 1, l, r, v);
    else update(x << 1, l, mid, v), update(x << 1 | 1, mid + 1, r, v);
    pushup(x);
}
int query(int x, int l, int r) {
    if(l <= lch[x] && rch[x] <= r) {
        return Max[x];
    }
    pushdown(x);
    int mid = (lch[x] + rch[x]) / 2;
    if(r <= mid) return query(x << 1, l, r);
    else if(l > mid) return query(x << 1 | 1, l, r);
    else return max(query(x << 1, l, mid), query(x << 1 | 1, mid + 1, r));
}
int ans = 0;
int main() {
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; ++i) {
        scanf("%d%d", &L, &R); val[L].push_back(R);
    }
    build(1, 0, m + 1);
    for(int i = 0; i <= m; ++i) {
        for(int j = 0; j < val[i].size(); ++j) {
            update(1, 0, val[i][j], 1);
        }
        ans = max(ans, query(1, i + 1, m + 1) - m - i - 1);
    }
    printf("%d\n", max(ans, n - m));
    return 0;
}

转载于:https://www.cnblogs.com/ogiso-setsuna/p/8455396.html

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值