题目链接 GukiZ and GukiZiana
题目大意:一个数列,支持两个操作。一种是对区间$[l, r]$中的数全部加上$k$,另一种是查询数列中值为$x$的下标的最大值减最小值。
$n <= 500000, q <= 50000$
我一开始的反应是线段树,然后发现自己完全想错了……
这道题时限$10$秒,但也很容易超时。我后来是用分块过的。
把序列分成$\sqrt{n}$个块,每个块的大小为$\sqrt{n}$(最后一个块可能因为不能整除的关系可能会小一些)
每个块维护一个值$delta[i]$,表示这块的每一个数值都要加上这个值。
第1种操作的时候,找到$l$和$r$所在的块。
这两个块之间(不包含$l$所在的块和$r$所在的块,如果没有就不修改)的所有块的$delta$都加上$x$
这样就降低了修改的时间复杂度
$l$所在的块中的元素依次遍历,若下标满足$l <= i <= r$,则值加$x$
$r$所在的块中的元素依次遍历,若下标满足$l <= i <= r$,则值加$x$
每个块内按照值升序排序(第二关键字为下标)
当一个块的整体大小顺序可能发生改变时,就对这个块内部$sort$一遍,当然没必要$sort$的时候不要$sort$
不然可能$TLE$
查询的时候对每个块二分查找,找到值为$x$的元素的下标,并实时更新答案。
时间复杂度$O(q\sqrt{n}log(\sqrt{n}))$
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define fi first
#define se second
typedef long long LL;
const int N = 500010;
const int Q = 810;
int block_size, block_num, n, q, c[N], cnt, et, op, l, r;
LL a[N], delta[N], x;
vector <pair<LL, int> > block[Q];
void update(int l, int r, LL x){
rep(i, c[l] + 1, c[r] - 1)
delta[i] += x;
for (auto &node : block[c[l]])
if (node.se >= l && node.se <= r)
node.fi += x;
sort(block[c[l]].begin(), block[c[l]].end());
if (c[r] > c[l]){
for (auto &node : block[c[r]])
if (node.se >= l && node.se <= r)
node.fi += x;
sort(block[c[r]].begin(), block[c[r]].end());
}
}
void query(LL x){
int L = 1 << 30, R = -1;
rep(i, 1, block_num){
auto it = lower_bound(block[i].begin(), block[i].end(), make_pair(x - delta[i], 0));
if (it != block[i].end() && it -> first == x - delta[i])
L = min(L, it -> se);
it = lower_bound(block[i].begin(), block[i].end(), make_pair(x - delta[i] + 1, 0));
if (it != block[i].begin()){
--it;
if (it -> fi == x - delta[i])
R = max(R, it -> se);
}
}
if (~R) printf("%d\n", R - L);
else puts("-1");
}
int main(){
scanf("%d%d", &n, &q);
rep(i, 1, n) scanf("%lld", a + i);
block_size = sqrt(n + 0.5);
block_num = n / block_size;
if (n % block_size) ++block_num;
cnt = 1;
rep(i, 1, n){
++et;
c[i] = cnt;
block[cnt].push_back({a[i], i});
if (et == block_size){
et = 0;
++cnt;
}
}
rep(i, 1, block_num) sort(block[i].begin(), block[i].end());
for (; q--; ){
scanf("%d", &op);
if (op == 1){
scanf("%d%d%lld", &l, &r, &x);
update(l, r, x);
}
else{
scanf("%lld", &x);
query(x);
}
}
return 0;
}