BZOJ4597 SHOI2016随机序列(线段树)

本文介绍了一种解决动态更新问题的高效算法,通过预处理和树状数组实现快速区间更新和查询,适用于需要频繁进行区间操作的场景。文章详细解释了算法原理,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  先考虑题目所说的太简单了的问题。注意到只要把加减号相取反,就可以得到一对除了第一项都互相抵消的式子。于是得到答案即为Σf(i)g(i),其中f(i)为前缀积,g(i)为第i个数前面所有符号均填乘号,第i个数后面符号不填乘号,剩余任意填的方案数,也即g(i)=2*3n-i-1(i<n),g(n)=1。

  现在考虑修改产生的影响。显然会造成一段后缀的前缀积的改变。给他们区间乘一下维护区间和就好了。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 1000000007
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int n,m,a[N],f[N];
int L[N<<2],R[N<<2],lazy[N<<2],sum[N<<2];
int inv(int a)
{
    int s=1,k=P-2;
    for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
    return s;
}
void update(int k,int x){sum[k]=1ll*sum[k]*x%P;lazy[k]=1ll*lazy[k]*x%P;}
void down(int k){update(k<<1,lazy[k]),update(k<<1|1,lazy[k]),lazy[k]=1;}
void build(int k,int l,int r)
{
    L[k]=l,R[k]=r;lazy[k]=1;
    if (l==r) {sum[k]=f[l];return;}
    int mid=l+r>>1;
    build(k<<1,l,mid);
    build(k<<1|1,mid+1,r);
    sum[k]=(sum[k<<1]+sum[k<<1|1])%P;
}
void modify(int k,int l,int r,int x)
{
    if (L[k]==l&&R[k]==r) {update(k,x);return;}
    if (lazy[k]!=1) down(k);
    int mid=L[k]+R[k]>>1;
    if (r<=mid) modify(k<<1,l,r,x);
    else if (l>mid) modify(k<<1|1,l,r,x);
    else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,x);
    sum[k]=(sum[k<<1]+sum[k<<1|1])%P;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj4597.in","r",stdin);
    freopen("bzoj4597.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read(),m=read();
    for (int i=1;i<=n;i++) a[i]=read();
    f[n]=1,f[n-1]=2;
    for (int i=n-2;i>=1;i--) f[i]=3ll*f[i+1]%P;
    int ans=0,s=1;
    for (int i=1;i<=n;i++)
    {
        s=1ll*s*a[i]%P;
        f[i]=1ll*s*f[i]%P;
    }
    build(1,1,n);
    while (m--)
    {
        int x=read(),y=read();
        modify(1,x,n,1ll*y*inv(a[x])%P);
        a[x]=y;
        printf("%d\n",sum[1]);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/9900395.html

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值