CS3334 Lecture 1

本文介绍了如何使用函数来衡量程序的时间复杂度,通过分析算法运行时间的增长率,采用O、Ω和θ记号来表达不同算法的效率,并给出了寻找这些记号的具体规则与实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lecture 1: Complexity Analysis

How to measure Running time: Use a function to model the running time of a program or procedure.

  • Assume an abstract machine and count the number of “steps” executed by an algorithm

 

Function: In mathematics, a function is a relation between a set of inputs and a set of allowed outputs with the property that each input is related to exactly one output

 

How to Model Running Time as a function:

Resultant function: f(n) = 3n + 4 = O(n)   will be explained in the follow

 


Compare the functions of Running Time models:

Consider the order of growth of running time, not the actual value

The order of growth rate

  • Give a simple characterization of the algorithm’s efficiency 
  • Allow us to compare the relative performance of alternative algorithms

In the analysis of algorithms, we need to consider the performance of algorithms when applied to very very big input datasets, e.g., very large n (i.e., asymptotic analysis)

TA(n) = 100n + 50

TB(n) = (0.5)n2 + 4.5n + 5

 TA(n) > TB(n) if n < c,   but TA(n) < TB(n) if n > c

 

Asymptotic Notation - notations to express the growth rate of a function (Just for function)

A way to compare 'size' of functions:

– O-notation (“Big-oh”) ≈≤ (upper bound)

– Ω-notation (“Big-omega”) ≈≥ (lower bound)

– θ-notation (“theta”) ≈= (in between)

 


O-notation:

f(n) = O(g(n)) to                f(n) ≤ c*g(n)

  • Indicate that f(n) is a member of the set O(g(n))
  • Give that g(n) is an upper bound for f(n) to within a constant factor

f(n) = O(g(n)): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

 

Ω-notation:

f(n) = Ω(g(n)) to         f(n) ≥ c*g(n)

  • Indicate that f(n) is a member of the set Ω(g(n))
  • Give that g(n) is a lower bound for f(n) to within a constant factor

f(n) = Ω(g(n)): there exist positive constants c and n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0

 

θ-notation

f(n) = θ(g(n)) to          c1g(n) ≤ f(n) ≤ c2g(n)

  • Indicate that f(n) is a member of the set O(g(n)), give that g(n) is an upper bound for f(n) to within a constant factor
  • Indicate that f(n) is a member of the set Ω(g(n)), give that g(n) is a lower bound for f(n) to within a constant factor 

f(n) = θ(g(n)) if and only if (1) f(n) = O(g(n)) and (2) f(n) = Ω(g(n))

f(n) = θ(g(n)): there exist positive constants c1, c2 and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

 

 


Find the O-notation of a function

The function must with a constant number of terms

and fulfill three rules:

Rule 1: sort the terms of the function in decreasing order of their growth rates

constant < logn < n < nlogn ≤ nlognc < n2 < n3 < 2n

Rule 2: Ignore the lower order terms (only keep the leading term)

Rule 3: Ignore the coefficient of the leading term 

 

Example 1:

1. By Rule #1: f(n) = 4n3 + 5n + 1000logn

2. By Rule #2: f(n) = O(4n3)

3. By Rule #3: f(n) = O(n3)

n3 will dominate the growth rate so ignore the other terms and constant

Example 2:

An arithmetic progression:

1+2+...+(n-1)+n is not O(n) but O(n2)

1+2+...+(n-1)+n = [(1+n)n]/2 = n2/2 + n/2 = O(n2/2) = O(n2)

 

The same rules can be used to find the Ω-notation of a function

Transpose symmetry property

– f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

– In other words, if g(n) is the asymptotic upper bound of f(n), then f(n) is the asymptotic lower bound of g(n), and vice versa.

 


Time Complexity               

(Space complexity = space in memory)

Time complexity related to input size n and running time. For a fixed input size n, running time may still depend on the input data (e.g., data distribution and input order)

NOTE: A function to describe the (best/worst/average) case.  For each case, you can find three notations

-Best case time complexity Tb(n):                  

  • The smallest time over all inputs of size n

-Worst case time complexity Tw(n): 

  • The largest time over all inputs of size n 
  • Give us a performance guarantee that is independent of input data

-Average case time complexity T (n):

  • The average time over all inputs of size n
  • Need an assumption on an input distribution (e.g., in uniform distribution, each possible input is equally likely to happen)
  • Allow us to predict the performance in practice if our assumption on input distribution is realistic

 

转载于:https://www.cnblogs.com/charon922/p/8320028.html

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值