Windows Azure Blob(1) - Introduction

本文介绍了Windows Azure存储服务,包括Blob、Table和Queue三种主要的数据抽象方式。详细阐述了如何创建存储账户并使用256位密钥进行身份验证的过程。此外,还深入解析了Blob数据模型,包括存储账户、Blob容器及Blob等概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows Azure Storage allows application developers to store their data in the cloud, so the application can access its data from anywhere at any time, store any amount of data and for any length of time, and be confident that the data is durable and will not be lost.   Windows Azure Storage provides a rich set of data abstractions:

·         Windows Azure Blob – provides storage for large data items.

·         Windows Azure Table – provides structured storage for maintaining service state.

·         Windows Azure Queue – provides asynchronous work dispatch to enable service communication.

 

To use Windows Azure Storage a user needs to create a storage account. This is done via the Windows Azure portal web interface.  The user will receive a 256-bit secret key once the account is created. This secret key is then used to authenticate user requests to the storage system.    Specifically, a HMAC SHA256 signature for the request is created using this secret key.    The signature is passed with each request to authenticate the user requests by verifying the HMAC signature.

 

Windows Azure Blob Data Modal

 

The figure below depicts the namespace of Windows Azure Blob.

 

·         Storage Account – All access to Windows Azure Storage is done through a storage account.

o   This is the highest level of the namespace for accessing blobs

o   An account can have many Blob Containers

 

  • Blob Container – A container provides a grouping of a set of blobs.   The container name is scoped by the account.

o   Sharing policies are set at the container level. Currently "Public READ" and "Private" are supported.   When a container is "Public READ", all its contents can be read by anyone without requiring authentication. When a container is "Private", only the owner of the corresponding account can access the blobs in that container with authenticated access.

o   Containers can also have metadata associated with them. Metadata is in the form of <name, value> pairs, and they are up to 8KB in size per container.

o   The ability to list all of the blobs within the container is also provided.

·         Blob – Blobs are stored in and scoped by Blob Containers.   Each blob can be up to 50GB. A blob has a unique string name within the container.   Blobs can have metadata associated with them, which are <name, value> pairs, and they are up to 8KB in size per container. The blob metadata can be gotten and set separately from the blob data bits.

 

转载于:https://www.cnblogs.com/Yang_Zhang/archive/2009/01/18/1377934.html

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值