原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ314.html
题解
如果只加不减,那么瞎势能分析一波可以知道暴力模拟的复杂度是对的。
但是有减法怎么办???
再搞一个类似的,维护减了多少。
那么,询问一个数位的值的时候,我们只需要得到两部分值中这一位的值是多少,以及是否退位,就可以得到答案。
显然关键是退不退位。
退不退位看这一位之后的后缀部分哪一个大。
这里我们需要这样做: 如果加法和减法两部分维护的值中,某一位都不是 0 ,那么就两边互相抵消,直到两边至少有一个是 0 。
那么判断哪一个大就是看两部分中,当前位以后,第一个有值的位置是哪一个大。用两个set瞎搞就好了。
我们维护的时候用 $2^{30}$ 进制,这样时间复杂度就可以接受了。
时间复杂度 $O(n\log n)$ 。
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define y1 __zzd001
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=(1<<20)+5;
int n,t1,t2,t3,base=1<<30;
int v[2][N];
set <int> s[2];
void upd1(int a,int b){
if (!a)
return;
if (v[1][b]){
int d=min(v[1][b],a);
v[1][b]-=d,a-=d;
if (!v[1][b])
s[1].erase(b);
}
if (!a)
return;
if (!v[0][b])
s[0].insert(b);
v[0][b]+=a;
if (v[0][b]>=base){
if (!(v[0][b]-=base))
s[0].erase(b);
upd1(1,b+1);
}
}
void upd2(int a,int b){
if (!a)
return;
if (v[0][b]){
int d=min(v[0][b],a);
v[0][b]-=d,a-=d;
if (!v[0][b])
s[0].erase(b);
}
if (!a)
return;
if (!v[1][b])
s[1].insert(b);
v[1][b]+=a;
if (v[1][b]>=base){
if (!(v[1][b]-=base))
s[1].erase(b);
upd2(1,b+1);
}
}
int main(){
n=read(),t1=read(),t2=read(),t3=read();
clr(v);
s[0].clear(),s[1].clear();
s[0].insert(-1),s[1].insert(-1);
while (n--){
int type=read();
if (type==1){
int a=read(),b=read();
int c=b%30,d=b/30;
if (a>=0){
upd1((a<<c)&(base-1),d);
upd1(a>>(30-c),d+1);
}
else {
a=-a;
upd2((a<<c)&(base-1),d);
upd2(a>>(30-c),d+1);
}
}
else {
int k=read();
int a=(v[0][k/30]>>(k%30)&1)^(v[1][k/30]>>(k%30)&1);
int x=v[0][k/30]&((1<<(k%30))-1);
int y=v[1][k/30]&((1<<(k%30))-1);
if (x!=y){
if (x<y)
a^=1;
}
else if (*--s[0].lower_bound(k/30)<*--s[1].lower_bound(k/30))
a^=1;
printf("%d\n",a);
}
}
return 0;
}