【动手学深度学习】Jupyter notebook中 import mxnet出错

本文介绍在d2l-zh目录下使用Jupyter Notebook时遇到的无法导入MXNet模块问题及其解决方法。原因是未正确激活环境,通过在该目录下运行conda activate gluon命令,再打开Jupyter Notebook即可正常导入MXNet模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题,

但是命令行运行是可以导入mxnet模块的。

原因:

激活环境是能够运行代码的前提。

解决方法:

在d2l-zh目录运行conda activate gluon命令,然后再打开jupyter notebook,则可以正常导入mxnet模块。

 

参考

1. d2l-zh-doc;

2. 【动手学深度学习】中Jupyter notebook中 import mxnet出错;

转载于:https://www.cnblogs.com/happyamyhope/p/10979105.html

### 如何在 Jupyter Notebook 中安装和配置 MXNet 深度学习框架 #### 创建并激活虚拟环境 为了确保项目的依赖项不会干扰其他项目,在 Windows 10 上建议创建一个新的 Python 虚拟环境来安装 MXNet GPU 版本。这可以通过 Anaconda Navigator 或命令行完成。 对于命令行操作,可以使用如下指令: ```bash conda create --name mxnet_gpu python=3.8 conda activate mxnet_gpu ``` 上述命令会建立名为 `mxnet_gpu` 的新环境,并将其激活以便后续安装所需的软件包[^1]。 #### 安装 MXNet GPU 版本和支持库 一旦虚拟环境准备就绪,则需下载适用于 NVIDIA CUDA 平台的特定版本 MXNet 库。具体来说,应该执行以下 pip 命令以获取最新稳定版的 MXNet GPU 支持: ```bash pip install mxnet-cu110==1.9.1 # 这里假设使用的CUDA版本为11.0, 可能需要根据实际情况调整 ``` 除了核心库外,还应考虑一并安装一些常用的辅助工具集,比如 ITK 图像处理扩展模块,这对于从事医学影像分析的研究人员尤其有用。通过 conda 渠道可以直接获得这些资源: ```bash conda install -c conda-forge itk ``` 以上步骤完成后,MXNet 将能够识别到本地已有的显卡硬件加速能力,从而显著提升训练效率。 #### 配置 Jupyter Notebook 使用新的内核 为了让 Jupyter Notebook 认识到刚设置好的带有 MXNet-GPU 功能的新 Python 解释器,还需注册该解释器作为 IPython kernel 的一部分。此过程涉及两个简单的终端命令: ```bash python -m ipykernel install --user --name=mxnet_gpu --display-name "Python (mxnet_gpu)" ``` 这条语句的作用是在用户的个人目录下添加一个指向当前活动环境中 Python 解释器路径的信息文件;而第二个参数则定义了将来启动 notebook 后所见到的名字标签[^4]。 #### 测试安装情况 最后一步是要验证一切是否正常工作。打开浏览器中的 Jupyter Notebook 接口,新建一个笔记本文档,选择之前自定义过的 “Python (mxnet_gpu)” 内核选项,接着尝试导入 mxnet 包并打印其版本号来进行简单测试: ```python import mxnet as mx print(mx.__version__) ``` 如果一切顺利的话,应当能看到预期的结果输出,证明 MXNet 已经成功集成到了 Jupyter 环境当中[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值