HDU 4856 Tunnels

本文介绍了一种使用状态压缩动态规划解决迷宫寻路问题的方法,通过计算不同隧道间最短路径来确定访问所有隧道所需的最短时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tunnels

Time Limit: 1500ms
Memory Limit: 32768KB
This problem will be judged on  HDU. Original ID: 4856
64-bit integer IO format: %I64d      Java class name: Main
 
Bob is travelling in Xi’an. He finds many secret tunnels beneath the city. In his eyes, the city is a grid. He can’t enter a grid with a barrier. In one minute, he can move into an adjacent grid with no barrier. Bob is full of curiosity and he wants to visit all of the secret tunnels beneath the city. To travel in a tunnel, he has to walk to the entrance of the tunnel and go out from the exit after a fabulous visit. He can choose where he starts and he will travel each of the tunnels once and only once. Now he wants to know, how long it will take him to visit all the tunnels (excluding the time when he is in the tunnels).
 

Input

The input contains mutiple testcases. Please process till EOF.
For each testcase, the first line contains two integers N (1 ≤ N ≤ 15), the side length of the square map and M (1 ≤ M ≤ 15), the number of tunnels.
The map of the city is given in the next N lines. Each line contains exactly N characters. Barrier is represented by “#” and empty grid is represented by “.”.
Then M lines follow. Each line consists of four integers x1, y1, x2, y2, indicating there is a tunnel with entrence in (x1, y1) and exit in (x2, y2). It’s guaranteed that (x1, y1) and (x2, y2) in the map are both empty grid.
 

Output

For each case, output a integer indicating the minimal time Bob will use in total to walk between tunnels.
If it is impossible for Bob to visit all the tunnels, output -1.
 

Sample Input

5 4
....#
...#.
.....
.....
.....
2 3 1 4
1 2 3 5
2 3 3 1
5 4 2 1

Sample Output

7

Source

 
解题:状压dp。1<<(j-1)表示第i条隧道被选。
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 const int maxn = 20;
18 struct Tunnels {
19     int u,v,x,y;
20 };
21 Tunnels e[maxn];
22 int n,m,g[maxn][maxn],dp[1<<15][maxn];
23 char mp[maxn][maxn];
24 int bfs(Tunnels &a,const Tunnels &b) {
25     queue< pii >q;
26     static int vis[maxn][maxn];
27     static const int dir[4][2] = {0,-1,-1,0,1,0,0,1};
28     memset(vis,-1,sizeof(vis));
29     q.push(make_pair(a.x,a.y));
30     vis[a.x][a.y] = 0;
31     while(!q.empty()) {
32         pii now = q.front();
33         q.pop();
34         if(now.first == b.u && now.second == b.v)
35             return vis[now.first][now.second];
36         for(int i = 0; i < 4; i++) {
37             int x = now.first+dir[i][0];
38             int y = now.second+dir[i][1];
39             if(vis[x][y] > -1 || mp[x][y] == '#') continue;
40             vis[x][y] = vis[now.first][now.second]+1;
41             q.push(make_pair(x,y));
42         }
43     }
44     return -1;
45 }
46 int main() {
47     while(~scanf("%d %d",&n,&m)) {
48         memset(mp,'#',sizeof(mp));
49         for(int i = 1; i <= n; i++)
50             scanf("%s",mp[i]+1);
51         for(int i = 1; i <= m; i++)
52             scanf("%d %d %d %d",&e[i].u,&e[i].v,&e[i].x,&e[i].y);
53         for(int i = 1; i <= m; i++) {
54             for(int j = 1; j <= m; j++)
55                 g[i][j] = bfs(e[i],e[j]);
56         }
57         memset(dp,INF,sizeof(dp));
58         for(int i = 1; i <= m; i++) dp[1<<(i-1)][i] = 0;
59         int ans = INF;
60         for(int i = 1,M = 1 << m; i < M; i++) {
61             for(int j = 1; j <= m; j++) {
62                 if(i&(1<<(j-1))) {
63                     for(int k = 1; k <= m; k++) {
64                         if(k == j || (i&(1<<(k-1)) == 0) || g[k][j] == -1) continue;
65                         dp[i][j] = min(dp[i][j],dp[i^(1<<(j-1))][k]+g[k][j]);
66                     }
67                 }
68                 if(i == M-1) ans = min(ans,dp[i][j]);
69             }
70         }
71         printf("%d\n",ans == INF?-1:ans);
72     }
73     return 0;
74 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/3952457.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值