AP聚类算法(Affinity propagation Clustering Algorithm )

AP聚类算法是一种基于数据点间信息传递的聚类方法,它不需要预先确定聚类数量。该算法通过更新吸引信息与归属信息两个矩阵来确定最佳聚类中心。此算法适用于动态数据集,并能有效避免传统k-均值算法中的局限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     AP聚类算法是基于数据点间的"信息传递"的一种聚类算法。与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数。AP算法寻找的"examplars"即聚类中心点是数据集合中实际存在的点,作为每类的代表。

 

算法描述:

   假设$\{ {x_1},{x_2}, \cdots ,{x_n}\} $数据样本集,数据间没有内在结构的假设。令是一个刻画点之间相似度的矩阵,使得$s(i,j) > s(i,k)$当且仅当$x_i$$x_j$的相似性程度要大于其与$x_k$的相似性。

AP算法进行交替两个消息传递的步骤,以更新两个矩阵:

  • 吸引信息(responsibility)矩阵R$r(i,k)$描述了数据对象k适合作为数据对象i的聚类中心的程度,表示的是从ik的消息;
  • 归属信息(availability)矩阵A$a(i,k)$描述了数据对象i选择数据对象k作为其据聚类中心的适合程度,表示从ki的消息。

 

    两个矩阵R ,A中的全部初始化为0. 可以看成Log-概率表。这个算法通过以下步骤迭代进行:

  • 首先,吸引信息(responsibility${r_{t + 1}}(i,k)$按照

${r_{t + 1}}(i,k) = s(i,k) - \mathop {\max }\limits_{k' \ne k} \{ {a_t}(i,k') + s(i,k')\} $

的迭代。

  • 然后,归属信息(availability${a_{t + 1}}(i,k)$按照

\[{a_{t + 1}}(i,k) = \mathop {\min }\limits_{} \left( {0,{r_t}(k,k) + \sum\limits_{i' \notin \{ i,k\} } {\max \{ 0,{r_t}(i',k)\} } } \right),i \ne k\]

\[{a_{t+1}}(k,k) = \sum\limits_{i' \ne k} {\max \{ 0,{r_t}(i',k)\} } \]

迭代。

  • 对以上步骤进行迭代,如果这些决策经过若干次迭代之后保持不变或者算法执行超过设定的迭代次数,又或者一个小区域内的关于样本点的决策经过数次迭代后保持不变,则算法结束。

 

    为了避免振荡,AP算法更新信息时引入了衰减系数$\lambda $。每条信息被设置为它前次迭代更新值的$\lambda $倍加上本次信息更新值的1-$\lambda $倍。其中,衰减系数$\lambda $是介于01之间的实数。即第t+1次$r(i,k)$$a(i,k)$的迭代值:

\[{r_{t + 1}}(i,k) \leftarrow (1 - \lambda ){r_{t + 1}}(i,k) + \lambda {r_t}(i,k)\]

\[{a_{t + 1}}(i,k) \leftarrow (1 - \lambda ){a_{t + 1}}(i,k) + \lambda {a_t}(i,k)\]

 

图1 算法实现过程

 

图2 对人脸数据库的聚类结果比较

 

 

转载于:https://www.cnblogs.com/huadongw/p/4202492.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值