Goldbach`s Conjecture(素筛水题)题解

本文介绍了一个简单程序,用于验证哥德巴赫猜想对于不超过10^7的偶数是否成立。该程序通过筛选素数并计算每个性质成立的情况数来实现。

Goldbach`s Conjecture

 

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

1)      Both a and b are prime

2)      a + b = n

3)      a ≤ b

Sample Input

2

6

4

Sample Output

Case 1: 1

Case 2: 1

思路:

水题一只,叫你求n=a+b且a,b都是素数这样的ab的对数。只要素筛一下,就能做了。最好先储存一下10^7以内的素数,数答案时只要到n/2就行了(因为a<=b),不知道不弄会不会超时,可以试一下。

代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack> 
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
const int N=10000005;	//18
const int MOD=1000; 
using namespace std;
bool prime[N];
int p[N/10],pn;
void get_prime(){
	pn=0;
	memset(prime,false,sizeof(prime));
	prime[0]=prime[1]=true;
	for(long long i=2;i<N;i++){
		if(!prime[i]){
			p[pn++]=i;
			for(long long j=i*i;j<N;j+=i){
				prime[j]=true;
			}
		}
	}
}
int main(){
	get_prime();
	int T,n,num=1,ans;
	scanf("%d",&T);
	while(T--){
		scanf("%d",&n);
		ans=0;
		for(int i=0;p[i]<=n/2;i++){
			if(prime[n-p[i]]==false) ans++;
		}
		printf("Case %d: %d\n",num++,ans);
	}
	return 0;
}



转载于:https://www.cnblogs.com/KirinSB/p/9409119.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值