Lightoj 1002 - Country Roads(prim算法)

本文介绍了一个寻找从不同城市到特定城市最小成本路径的问题。通过使用图论中的算法,如优先队列和图遍历,来解决如何找到具有最低最大边权重的路径。文章还提供了一段C++代码实现,展示了如何通过不断更新最低成本并最终确定每个城市的最小路径。

I am going to my home. There are many cities and many bi-directional roads between them. The cities are numbered from 0 to n-1 and each road has a cost. There are m roads. You are given the number of my city t where I belong. Now from each city you have to find the minimum cost to go to my city. The cost is defined by the cost of the maximum road you have used to go to my city.

 

For example, in the above picture, if we want to go from 0 to 4, then we can choose

1)      0 - 1 - 4 which costs 8, as 8 (1 - 4) is the maximum road we used

2)      0 - 2 - 4 which costs 9, as 9 (0 - 2) is the maximum road we used

3)      0 - 3 - 4 which costs 7, as 7 (3 - 4) is the maximum road we used

So, our result is 7, as we can use 0 - 3 - 4.

Input

Input starts with an integer T (≤ 20), denoting the number of test cases.

Each case starts with a blank line and two integers n (1 ≤ n ≤ 500) and m (0 ≤ m ≤ 16000). The next m lines, each will contain three integers u, v, w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 20000) indicating that there is a road between u and v with cost w. Then there will be a single integer t (0 ≤ t < n). There can be multiple roads between two cities.

Output

For each case, print the case number first. Then for all the cities (from 0 to n-1) you have to print the cost. If there is no such path, print 'Impossible'.

Sample Input

Output for Sample Input

2

 

5 6

0 1 5

0 1 4

2 1 3

3 0 7

3 4 6

3 1 8

1

 

5 4

0 1 5

0 1 4

2 1 3

3 4 7

1

Case 1:

4

0

3

7

7

Case 2:

4

0

3

Impossible

Impossible

Note

Dataset is huge, user faster I/O methods.

 

/* ***********************************************
Author        :guanjun
Created Time  :2016/6/6 18:42:59
File Name     :1002.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << 61;
const double eps=1e-5;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
    int x,y;
};
struct cmp{
    bool operator()(Node a,Node b){
        if(a.x==b.x) return a.y> b.y;
        return a.x>b.x;
    }
};

bool cmp(int a,int b){
    return a>b;
}
int edge[510][510];
int w[510][510];
int vis[510],lowcost[510];
int n,m,k;
int dis[maxn];
void prime(){
    memset(dis,-1,sizeof dis);
    dis[k]=0;
    cle(vis);
    vis[k]=1;
    for(int i=0;i<n;i++){
        lowcost[i]=edge[k][i];
    }
    int Min,x;
    while(1){
        Min=INF;
        for(int i=0;i<n;i++){
            if(lowcost[i]<Min&&!vis[i]){
                Min=lowcost[i],x=i;
            }
        }
        if(Min==INF)break;
        vis[x]=1;
        dis[x]=Min;
        for(int i=0;i<n;i++){
            if(!vis[i]&&max(dis[x],edge[x][i])<lowcost[i]){
                lowcost[i]=max(edge[x][i],dis[x]);
            }
        }
    }
}
int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    #endif
    //freopen("out.txt","w",stdout);
    int T,x,y,z;
    cin>>T;
    for(int t=1;t<=T;t++){
        printf("Case %d:\n",t);
        memset(edge,INF,sizeof edge);
        cin>>n>>m;
        for(int i=1;i<=m;i++){
            scanf("%d%d%d",&x,&y,&z);
            if(z<edge[x][y]){
                edge[x][y]=z;
                edge[y][x]=z;
            }
        }
        cin>>k;
        prime();
        for(int i=0;i<n;i++){
            if(dis[i]==-1)puts("Impossible");
            else printf("%d\n",dis[i]);
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/pk28/p/5564871.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值