素数线性筛学习

以前判断素数都是用O(sqrt(n))的方法来做,当数字很大的时候用时会很高,所以这里用到了另一种方法,线性筛。顾名思义,筛掉一部分数。

普通做法:当找到一个素数之后,任何一个数乘上这个数字都是合数,筛掉所有的合数就行。

int prime[N];
int n,m,test,j,ask,cut,i;
int Noprime[N];
void isprime()
{
    cut=1;
    prime[1]=2;//初始化,第一个质数为2
    Noprime[1]=1;//初始化,1为合数
    for(i=2;i<=n;i++){    
        if(Noprime[i]==0){
            prime[cut]=i;//如果是质数,添加到质数表
            cut++;
        }

        for(j=1;j<=n && prime[i]<=i && i*prime[j]<=n;j++){//前提限制为p<i,i*p<n
            Noprime[i*prime[j]]=1;//筛合数
            if(i % prime[j]==0)
  {//该最大因子i已枚举完毕
                break;
            }
        }

    }
    for(i=1;i<=m;i++){
        cin>>ask;

        if(Noprime[ask]==0){
            cout<<"Yes"<<endl;
        }else{
            cout<<"No"<<endl;
        }
    }
}

 

转载于:https://www.cnblogs.com/TheSilverMoon/p/9402193.html

内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值