812. Largest Triangle Area

本文介绍了一种算法,用于从平面上的点集中找出能构成的最大三角形面积。通过两种方法实现:一是传统循环遍历所有可能的三角形组合;二是使用itertools库简化代码。适用于3到50个不重复的点,坐标范围在-50到50之间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You have a list of points in the plane. Return the area of the largest triangle that can be formed by any 3 of the points.

Example:
Input: points = [[0,0],[0,1],[1,0],[0,2],[2,0]]
Output: 2
Explanation:
The five points are show in the figure below. The red triangle is the largest.

Notes:

3 <= points.length <= 50.
No points will be duplicated.
 -50 <= points[i][j] <= 50.
Answers within 10^-6 of the true value will be accepted as correct.

Solution1:

class Solution:
    def largestTriangleArea(self, points):
        """
        :type points: List[List[int]]
        :rtype: float
        """
        def solve(a,b,c):
            return 0.5*abs(a[0]*b[1] + b[0]*c[1] + c[0]*a[1] - a[0]*c[1] - b[0]*a[1] - c[0]*b[1])
        l = len(points)
        res = 0
        for a in range(l):
            for b in range(a+1,l):
                for c in range(b+1,l):
                    res = max(solve(points[a],points[b],points[c]),res)
        return res

Solution2:(用itertools.combinations可以简化代码,它返回list中指定数量的所有组合)

class Solution(object):
    def largestTriangleArea(self, points):
        """
        :type points: List[List[int]]
        :rtype: float
        """
        return max(0.5*abs((y1-x1)*(z2-x2)-(z1-x1)*(y2-x2)) for (x1,x2),(y1,y2),(z1,z2) in itertools.combinations(points,3))

转载于:https://www.cnblogs.com/bernieloveslife/p/9745244.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值