Introducing Deep Reinforcement

本文深入探讨了深度强化学习(RL)的六大核心元素及六种重要机制,并概述了其在游戏、机器人、自然语言处理等十二个领域的广泛应用。文章旨在帮助读者熟悉深度RL,并作为该领域研究人员、学生及工程师的参考。

 

The manuscript of Deep Reinforcement Learning is available now! It makes significant improvements to Deep Reinforcement Learning: An Overview, which has received 100+ citations, by extending its latest version more than one year ago from 70 pages to 150 pages.

It draws a big picture of deep reinforcement learning (RL) with many details. It covers contemporary work in historical contexts. It endeavours to answer the following questions: 1) Why deep? 2) What is the state of the art? and, 3) What are the issues, and potential solutions? It attempts to help those who want to get more familiar with deep RL, and to serve as a reference for people interested in this fascinating area, like professors, researchers, students, engineers, managers, investors, etc. Shortcomings and mistakes are inevitable; comments and criticisms are welcome.

The manuscript introduces AI, machine learning, and deep learning briefly, and provides a mini tutorial for reinforcement learning. The following figure illustrates relationships among these concepts, with major contents for machine learning and AI .Deep reinforcement learning is reinforcement learning integrated with deep learning, or deep artificial neural networks. A blog is dedicated to Resources for Deep Reinforcement Learning.

 

The manuscript covers six core elements: value function, policy, reward, model, exploration vs. exploitation, and representation; six important mechanisms: attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn; and twelve applications: games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art.

 

Deep reinforcement learning has made exceptional achievements, e.g., DQN applying to Atari games ignited this wave of deep RL, and AlphaGo (Zero) and DeepStack set landmarks for AI. Deep RL has many newly invented algorithms/architectures, e.g., DQNA3CTRPOPPODDPGTrust-PCLGPSUNREALDNC, etc. Moreover, deep RL has been enjoying very abound and diverse applications, e.g., Capture the FlagDota 2StarCraft IIroboticscharacter animationconversational AIneural architecture design (AutoML)data center coolingrecommender systemsdata augmentationmodel compressioncombinatorial optimizationprogram synthesistheorem provingmedical imagingmusic, and chemical retrosynthesis, so on and so forth. A blog is dedicated to Reinforcement Learning applications.

In general, RL is probably helpful, if a problem can be regarded as or transformed to a sequential decision making problem, and states, actions, maybe rewards, can be constructed; sometimes the problem may not appear as an RL problem on the surface. Roughly speaking, if a task involves some manual designed “strategy”, then there is a chance for reinforcement learning to help. Creativity would push the frontiers of deep RL further with respect to core elements, important mechanisms, and applications.

Albeit being so successful, deep RL encounters many issues, like credit assignment, sparse reward, sample efficiency, instability, divergence, interpretability, safety, etc.; even reproducibility is an issue.

 

Six research directions are proposed as both challenges and opporrtunities. There are already some progress in these directions, e.g., DopamineTStarBotsMORELGQN, visual reasoningneural-symbolic learningUPNcausal InfoGANmeta-gradient RL, along with many applications as above.

  1. systematic, comparative study of deep RL algorithms
  2. “solve” multi-agent problems
  3. learn from entities, but not just raw inputs
  4. design an optimal representation for RL
  5. AutoRL
  6. develop killer applications for (deep) RL

It is desirable to integrate RL more deeply with AI, with more intelligence in the end-to-end mapping from raw inputs to decisions, to incorporate knowledge, to have common sense, to be more efficient, to be more interpretable, and to avoid obvious mistakes, etc., rather than working as a blackbox.

 

Deep learning and reinforcement learning, being selected as one of the MIT Technology Review 10 Breakthrough Technologies in 2013 and 2017 respectively, will play their crucial roles in achieving artificial general intelligence. David Silver proposed a conjecture: artificial intelligence = reinforcement learning + deep learning (AI = RL + DL). We will see both deep learning and reinforcement learning prospering in the coming years and beyond. Deep learning is exploding. It is the right time to nurture, educate and lead the market for reinforcement learning.

Deep learning, in this third wave of AI, will have deeper influences, as we have already seen from its many achievements. Reinforcement learning, as a more general learning and decision making paradigm, will deeply influence deep learning, machine learning, and artificial intelligence in general.

转载于:https://www.cnblogs.com/alan-blog-TsingHua/p/9968595.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值