Ridge Regression

本文回顾了正则化方法的发展历程,从20世纪中叶Tikhonov解决不适定问题的工作到Hoerl和Kennard提出的岭回归方法。文中详细介绍了岭回归如何解决病态线性回归问题,并揭示了它与权重衰减之间的等价关系。此外,还探讨了岭回归在神经网络中的应用,并提出了一种局部岭回归方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Around the middle of the 20th century the Russian theoretician Andre Tikhonov was working on the solution of ill-posed problems. These are mathematical problems for which no unique solution exists because, in effect, there is not enough information specified in the problem. It is necessary to supply extra information (or assumptions) and the mathematical technique Tikhonov developed for this is known as regularisation.

Tikhonov's work only became widely known in the West after the publication in 1977 of his book [29]. Meanwhile, two American statisticians, Arthur Hoerl and Robert Kennard, published a paper in 1970 [11] on ridge regression, a method for solving badly conditioned linear regression problems. Bad conditioning means numerical difficulties in performing the matrix inverse necessary to obtain the variance matrix. It is also a symptom of an ill-posed regression problem in Tikhonov's sense and Hoerl & Kennard's method was in fact a crude form of regularisation, known now as zero-order regularisation [25].

In the 1980's, when neural networks became popular, weight decay was one of a number of techniques `invented' to help prune unimportant network connections. However, it was soon recognised [8] that weight decay involves adding the same penalty term to the sum-squared-error as in ridge regression. Weight-decay and ridge regression are equivalent.

While it is admittedly crude, I like ridge regression because it is mathematically and computationally convenient and consequently other forms of regularisation are rather ignored here. If the reader is interested in higher-order regularisation I suggest looking at [25] for a general overview and [16] for a specific example (second-order regularisation in RBF networks).

We next describe ridge regression from the perspective of bias and variance and how it affects the equations for the optimal weight vector, the variance matrix and the projection matrix. A method to select a good value for the regularisation parameter, based on a re-estimation formula, is then presented. Next comes a generalisation of ridge regression which, if radial basis functions are used, can be justly called local ridge regression. It involves multiple regularisation parameters and we describe a method for their optimisation. Finally, we illustrate with a simple example.

转载于:https://www.cnblogs.com/ysjxw/archive/2008/05/21/1204117.html

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值