TensorFlow训练MNIST报错ResourceExhaustedError

本文解决在使用TensorFlow训练MNIST数据集时遇到的ResourceExhaustedError错误,通过将测试集分割成小批次进行预测,有效避免了GPU显存不足的问题。

title: TensorFlow训练MNIST报错ResourceExhaustedError
date: 2018-04-01 12:35:44
categories:

  • deep learning

tags:

  • MNIST
  • TensorFlow

在最后测试的一步报错:

ResourceExhaustedError (see above for traceback): OOM when allocating tensor

搜索了一下才知道是GPU显存不足(emmmm....)造成的,可以把最后测试的那行代码改为将测试集分成几个小部分分别测试最后再求精度的平均值:

accuracy_sum = tf.reduce_sum(tf.cast(correct_prediction, tf.float32))
good = 0
total = 0
for i in range(10):
    testSet = mnist.test.next_batch(50)
    good += accuracy_sum.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0})
    total += testSet[0].shape[0]
print ("test accuracy %g"%(good/total))

转载于:https://www.cnblogs.com/zmj97/p/10180629.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值