pandas数据清洗

一.处理缺省值

  DataFrame.dropna

    DataFrame.dropna(axis=0how='any'thresh=Nonesubset=Noneinplace=False)[source]

    return DataFrame with NA entries dropped from it.

  DataFrame.fillna

    DataFrame.fillna(value=Nonemethod=Noneaxis=Noneinplace=Falselimit=Nonedowncast=None**kwargs)[source]

    Fill NA/NaN values using the specified method

    return filled DataFrame

  DataFrame.replace

    DataFrame.replace(to_replace=Nonevalue=Noneinplace=Falselimit=Noneregex=Falsemethod='pad')[source]

    Replace values given in to_replace with value.

    return DataFrame object after replacement

二.series字符串处理函数

  series.str.contains

  series.str.strip

  series.str.split

  series.str.join

  series.str.upper,lower,title

三.删除重复项

  DataFrame.duplicated() 判断是否有重复项

  DataFrame.drop_duplicates()删除重复项

    DataFrame.drop_duplicates(subset=Nonekeep='first'inplace=False)[source]

四.离散化

  pandas.cut(xbinsright=Truelabels=Noneretbins=Falseprecision=3include_lowest=Falseduplicates='raise')[source]

  按照bins 位置划分

  pandas.qcut(xqlabels=Noneretbins=Falseprecision=3duplicates='raise')[source]

  按比例离散  

 

  插入空行:

index1 = list(df.index)
index1.append('seven')
df = pd.DataFrame(df,index=index1)
df

 

转载于:https://www.cnblogs.com/yitiaodahe/p/9266503.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值