2015 多校赛 第三场 1002 (hdu 5317)

本文介绍了一种关于区间最大GCD查询(RGCDQ)的问题,通过预处理F函数值来优化算法效率。重点在于利用筛法预处理F值,并通过数组记录前缀信息,实现快速查询。

Description

Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)
 

Input

There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries. 
In the next T lines, each line contains L, R which is mentioned above. 

All input items are integers. 
1<= T <= 1000000 
2<=L < R<=1000000 
 

Output

For each query,output the answer in a single line. 
See the sample for more details. 
 

Sample Input

2
2 3
3 5
 

Sample Output

1
1
 
注意到F值不大。直接用筛法预处理出F值。用数组num[i][j]记录前 i 个数中有多少个 j。
然后暴力。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1000005
int t,l,r,F[maxn],num[maxn][10],cnt[10],ans;
void init(){
    for(int i=2;i<=1000000;i++){
        if(F[i]==0){
            for(int j=i<<1;j<=1000000;j+=i)
                F[j]++;
            F[i]=1;
        }
    }
    for(int i=2;i<=1000000;i++){
        for(int j=1;j<=7;j++){
            num[i][j]=num[i-1][j];
            if(F[i]==j) num[i][j]++;
        }
    }
}
int main(){
    init();
    scanf("%d",&t);
    while(t--){
        ans=1;
        scanf("%d%d",&l,&r);
        for(int i=1;i<=7;i++){
            cnt[i]=num[r][i]-num[l-1][i];
            if(cnt[i]>1) ans=i;
        }
        if(cnt[6]&&cnt[3]) ans=max(ans,3);
        if(cnt[6]&&cnt[2]) ans=max(ans,2);
        if(cnt[4]&&cnt[2]) ans=max(ans,2);
        if(cnt[6]&&cnt[4]) ans=max(ans,2);
        printf("%d\n",ans);
    }
    return 0;
}
View Code

 

 
 
 
 
 

转载于:https://www.cnblogs.com/names-yc/p/4703085.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值