机器学习基础

统计学习关于数据的基本假设是同类数据具有一定的统计规律性,同类数据指的是具有某种共同性质的数据,所以可用概率统计方法加以处理。比如,可用随机变量描述数据中的特征,用概率分布描述数据的统计规律。

统计学习总的目标是考虑学习什么样的模型如何学习模型,以使模型能对数据进行准确的预测与分析,同时也要考虑尽可能的提高学习效率。

统计学习方法的步骤:

l 得到一个有限的训练数据集合

l 确定包含所有可能模型的假设空间,即学习模型的集合

l 确定模型选择的准则,即学习的策略

l 实现求解最优模型的算法

l 通过学习方法选择最优的模型

l 利用最优模型对新数据进行预测或分析

统计学习包括监督学习、非监督学习、半监督学习和强化学习。

训练误差和测试误差与模型复杂度的关系:当模型复杂度增大时,训练误差会逐渐减小并趋向于0,测试误差会先减小,达到最小值后又增大。当模型的复杂度过大时,过拟合现象就会发生。

转载于:https://www.cnblogs.com/larry-xia/p/9130503.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值