微软大楼设计方案(中等) 推公式+RMQ问题

本文介绍了一种计算微软新大楼设计方案中核心部门之间移动时间不超过特定值时的最大部门对数量的方法。考虑到大楼布局和移动规则,文章提出了一种有效的算法来解决此问题。

近日,微软新大楼的设计方案正在广泛征集中,其中一种方案格外引人注目。在这个方案中,大楼由 nn 栋楼组成,这些楼从左至右连成一排,编号依次为 11 到 nn,其中第 ii 栋楼有 h_ihi​​层。每栋楼的每一层为一个独立的 办公区域,可以步行 直达同层相邻楼栋的办公区域,以及 直达同楼栋相邻楼层的办公区域。

由于方案设计巧妙,上一层楼、下一层楼、向左右移动到相邻楼栋同层的办公区域均刚好需要 11 分钟。在这些办公区域中,有一些被 核心部门 占用了(一个办公区域内最多只有一个核心部门),出于工作效率的考虑,微软希望核心部门之间的移动时间越短越好。对于一个给定的 最大移动时间 kk,大楼的 协同值 定义为:有多少个 核心部门对 之间的移动时间不超过 kk。由于大楼门禁的限制,不可以走出整个大楼,也不可以登上天台思考人生。你可以认为在办公区域内的移动时间忽略不计,并且在大楼内总是按照最优方案进行移动。

对于一个给定的新大楼设计方案,你能算出方案的协同值么?

输入格式

第一行包含两个正整数 n,k(1\leq k\leq 200020)n,k(1k200020),分别表示大楼的栋数以及最大移动时间。

第二行包含 nn 个正整数 h_1,h_2,...,h_n(1\leq h_i\leq 20)h1​​,h2​​,...,hn​​(1hi​​20),分别表示每栋楼的层数。

接下来一行包含一个正整数 mm,表示 核心部门 个数。

接下来 mm 行,每行两个正整数 x_i,y_i(1\leq x_i\leq n,1\leq y_i\leq h_{x_i})xi​​,yi​​(1xi​​n,1yi​​hxi​​​​),表示该核心部门位于第 x_ixi​​ 栋楼的第 y_iyi​​ 层。

输入数据保证 mm 个核心部门的位置不会重复。

对于简单版本:1\leq n,m\leq 501n,m50;

对于中等版本:1\leq n\leq 200000,1\leq m\leq 20001n200000,1m2000;

对于困难版本:1\leq n,m\leq 2000001n,m200000。

输出格式

输出一个整数,即整个大楼的 协同值。

样例解释

样例对应题目描述中的图,核心部门 11 和核心部门 33 之间的距离为 8>78>7,因此不能计入答案。

样例输入
5 7
4 1 1 3 1
3
1 4
3 1
4 3
样例输出
2

首先我们必须知道怎么走最短
一开始我意识到这是个动态的情况,涉及多个变量
但这个问题好解决,如果答案关于多个变量单调,则我们可用树型数据结构快速求极值,线段树和ST表均可以
对于简单版本,数据范围小,上来写了个BFS,这没说的
但我们仔细观察一下就会发现,从一个部门走到另外一个部门,无非横向距离和纵向距离之加和
分开考虑的话,横向的距离一定不会超过|xa-xb|
纵向就值得思考了,由于观察到,

中间太高的楼层,上去是没有意义的,因为要联通才行,所以你提前上去是要走回头路的

对于这个题,只要不走回头路,也就是横纵的移动向量尽量重叠部分少就是最短的

然后你发现,如果你走到最下面那条线以下也是不好的,因为你还得上去

因此我们只要这三个方向的移动距离都加起来就好了

此处不妨设xb>xa

记hm=min{ya,yb,hxa,hxa+1,....,hxb}

则第一段是ya-hm+

第二段是xb-xa+

第三段是yb-hm

所以答案就是xb-xa+(ya+yb)-hm

利用RMQ,hm可以O(1)求出,预处理nlogn,排序mlogm,统计答案m^2,总复杂度,(nlogn+m^2)

 

 
  

转载于:https://www.cnblogs.com/linkzijun/p/6944379.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值