Leetcode: Total Hamming Distance

本文介绍了一种计算一组整数间所有两两配对的总汉明距离的方法。通过统计每个位上1和0的数量,并将这些数量相乘再累加得到最终结果,实现了O(N)的时间复杂度和O(1)的空间复杂度。
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.

Now your job is to find the total Hamming distance between all pairs of the given numbers.

Example:
Input: 4, 14, 2

Output: 6

Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just
showing the four bits relevant in this case). So the answer will be:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.
Note:
Elements of the given array are in the range of 0 to 10^9
Length of the array will not exceed 10^4.

Example:

0 0 0 0 

0 1 0 0 

1 1 1 0

0 0 1 0

Total Hamming Distance = (3*1) + (2*2) + (2*2) + (4*0) = 11

so the idea is count the number of 1 and 0 on each bit, multiply them, then add up the product of all bits

O(N) time O(1) space

 1 public class Solution {
 2     public int totalHammingDistance(int[] nums) {
 3         int res = 0;
 4         for (int i=0; i<32; i++) {
 5             int bitCount = 0;
 6             for (int num : nums) {
 7                 bitCount += (num>>i) & 1;
 8             }
 9             res += bitCount * (nums.length - bitCount);
10         }
11         
12         return res;
13     }
14 }

 

转载于:https://www.cnblogs.com/EdwardLiu/p/6196705.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值