hdu4336压缩率大方的状态DP

本文介绍了一个经典的概率问题——通过购买零食来收集特定卡片所需的期望数量。该问题涉及到概率论和期望值计算,给出了一段C++代码实现,用于计算收集全系列卡片所需的零食包平均数量。

Card Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2141    Accepted Submission(s): 1008
Special Judge


Problem Description
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award. 

As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
 

Input
The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks. 

Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
 

Output
Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
 

Sample Input
1 0.1 2 0.1 0.4
 

Sample Output
10.000 10.500
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;

const int MAX=(1<<20)+10;
const double eps=1e-4;
int n;
double dp[MAX],p[MAX];

int main(){
	while(~scanf("%d",&n)){
		double p2=1; 
		for(int i=0;i<n;++i){scanf("%lf",&p[i]);p2-=p[i];}
		int bit=1<<n;
		dp[bit-1]=0;
		for(int i=bit-2;i>=0;--i){
			double p1=p2,ans=0;
			for(int j=0;j<n;++j){
				if(i&(1<<j)){//j这张卡片存在 
					p1+=p[j];
				}else{
					ans+=p[j]*(dp[i+(1<<j)]+1);
				}
				dp[i]=(ans+p1)/(1-p1);
			}
		}
		printf("%.4f\n",dp[0]);//这里保留4位小数是由于题目最后一句话 
	}
	return 0;
}



版权声明:本文博客原创文章,博客,未经同意,不得转载。

转载于:https://www.cnblogs.com/hrhguanli/p/4619724.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值