High Confidence Results

本文介绍了一种提高搜索结果准确性的方法,通过在爬取属性中设置高置信匹配属性,可以使得搜索结果更加精确地返回所需内容。这种方法不仅适用于人员属性搜索,还可以用于SharePoint、网页及Office等场景。

 We wanted high confidence results to search over these properties.  We found that the high confidence results were returning results only on the Preferred Name and Account Name properties.  Banged my head for hours  and finally stumbled on the admin page.

Steps to set:
1. SharedServices

2. Search Settings

3. Metadata Property Mappings

4. On the left hand menu secretly tucked away in obscurity  goto Crawled Properties link

5. Crawled Properties View screen, select People

6. Crawled Properties View - People screen.  You'll see a HighConfidenceMatching property assigned to a few properties.  This is the one to map to to get it to return on a search.  So People:AccountName(Text) and People: PreferredName and People:WorkEmail had it mapped.  I added HighConfidenceMatching to People:Location4Code, People:Location5Code, and People:Location7Code.  And tada, it worked!! Happy happy, joy joy!


And it looks like it isn't limited to just People.  From step 5 above, one could also set HighConfidenceMatching to things in SharePoint, Web, Office, etc.

转载于:https://www.cnblogs.com/frankzye/archive/2010/08/27/1810054.html

function dtmf_phone_recognition_improved() % 改进的DTMF电话号码识别系统 % 能够抵抗不同程度的高斯白噪声干扰 % 参数设置 Fs = 44100; % 采样率 tone_duration = 0.1; % 每个音调持续时间(秒) pause_duration = 0.05; % 音调间隔时间(秒) % DTMF频率定义 low_freqs = [697, 770, 852, 941]; % 低频组 high_freqs = [1209, 1336, 1477, 1633]; % 高频组 % DTMF键盘映射 dtmf_keys = [ '1', '2', '3', 'A'; '4', '5', '6', 'B'; '7', '8', '9', 'C'; '*', '0', '#', 'D' ]; % 读取或生成DTMF信号 [clean_signal, Fs] = generate_or_load_dtmf_signal(); % 使用您提供的函数添加不同信噪比的噪声 snr_levels = [ 0, -2, -5, -10, -20]; % 测试不同信噪比 results = cell(length(snr_levels), 2); for i = 1:length(snr_levels) fprintf('测试信噪比: %d dB\n', snr_levels(i)); % 添加噪声 noisy_signal = addDiffSnr4Student(clean_signal, snr_levels(i)); % 识别电话号码 phone_number = process_and_recognize(noisy_signal, Fs, tone_duration, pause_duration, ... low_freqs, high_freqs, dtmf_keys); results{i, 1} = snr_levels(i); results{i, 2} = phone_number; fprintf('识别结果: %s\n\n', phone_number); end % 显示最终结果 display_final_results(results, clean_signal); end function [signal, Fs] = generate_or_load_dtmf_signal() % 如果要从文件读取,取消下面注释并修改文件名 filename = ‘20231071364_实验二案例2_无噪DTMF.wav’; if exist(filename, ‘file’) [signal, Fs] = audioread(filename); if size(signal, 2) > 1 signal = mean(signal, 2); % 转为单声道 end end end function tone = generate_dtmf_tone(digit, duration, Fs) % DTMF频率映射 freq_map = containers.Map(); freq_map(‘1’) = [697, 1209]; freq_map(‘2’) = [697, 1336]; freq_map(‘3’) = [697, 1477]; freq_map(‘4’) = [770, 1209]; freq_map(‘5’) = [770, 1336]; freq_map(‘6’) = [770, 1477]; freq_map(‘7’) = [852, 1209]; freq_map(‘8’) = [852, 1336]; freq_map(‘9’) = [852, 1477]; freq_map(‘0’) = [941, 1336]; freq_map(‘*’) = [941, 1209]; freq_map(‘#’) = [941, 1477]; freq_map(‘A’) = [697, 1633]; freq_map(‘B’) = [770, 1633]; freq_map(‘C’) = [852, 1633]; freq_map(‘D’) = [941, 1633]; if isKey(freq_map, digit) freqs = freq_map(digit); t = 0:1/Fs:duration-1/Fs; tone = 0.5 * sin(2*pi*freqs(1)*t) + 0.5 * sin(2*pi*freqs(2)*t); tone = tone(:); else tone = zeros(round(duration*Fs), 1); end end function DTMF = addDiffSnr4Student(dtmfData, snrDB) % 使用您提供的加噪函数 % 为 dtmfData 信号加上指定信噪比的高斯白噪声 DTMF = awgn(dtmfData, snrDB, ‘measured’); figure; plot(DTMF); hold on; plot(dtmfData, 'r'); legend('加噪信号', '原始信号'); title(['信噪比 = ', num2str(snrDB), ' dB']); xlabel('采样点'); ylabel('幅度'); end function phone_number = process_and_recognize(signal, Fs, tone_duration, pause_duration, … low_freqs, high_freqs, dtmf_keys) % 完整的处理和识别流程 % 1. 预处理信号 processed_signal = advanced_preprocessing(signal, Fs); % 2. 检测和分割音调 tones = improved_tone_detection(processed_signal, Fs, tone_duration, pause_duration); % 3. 识别每个音调 phone_number = robust_frequency_recognition(tones, Fs, low_freqs, high_freqs, dtmf_keys); end function processed_signal = advanced_preprocessing(signal, Fs) % 改进的信号预处理 % 1. 带通滤波,保留DTMF频率范围 (600-1700 Hz) f_low = 600; f_high = 1700; % 使用切比雪夫滤波器,更好的阻带衰减 [b, a] = cheby2(6, 40, [f_low/(Fs/2), f_high/(Fs/2)], 'bandpass'); filtered_signal = filter(b, a, signal); % 2. 使用中值滤波去除脉冲噪声 window_size = 5; if length(filtered_signal) > window_size filtered_signal = medfilt1(filtered_signal, window_size); end % 3. 能量归一化 processed_signal = filtered_signal / max(abs(filtered_signal)); end function tones = improved_tone_detection(signal, Fs, tone_duration, pause_duration) % 改进的音调检测算法 tone_length = round(tone_duration * Fs); pause_length = round(pause_duration * Fs); % 使用短时能量和谱熵进行端点检测 frame_size = 256; hop_size = 128; energy = []; spectral_entropy = []; for i = 1:hop_size:length(signal)-frame_size frame = signal(i:i+frame_size-1); % 计算帧能量 frame_energy = sum(frame.^2); energy = [energy; frame_energy]; % 计算谱熵 frame_fft = abs(fft(frame .* hamming(frame_size))); frame_fft = frame_fft(1:frame_size/2+1); frame_fft = frame_fft / sum(frame_fft); frame_fft(frame_fft == 0) = eps; % 避免log(0) entropy = -sum(frame_fft .* log(frame_fft)); spectral_entropy = [spectral_entropy; entropy]; end % 归一化能量和熵 energy_norm = energy / max(energy); entropy_norm = spectral_entropy / max(spectral_entropy); % 结合能量和熵的检测指标 detection_metric = energy_norm .* (1 - entropy_norm); % 自适应阈值 threshold = 0.1 * max(detection_metric) + 0.9 * mean(detection_metric); % 检测音调起始点 tone_starts = []; in_tone = false; min_tone_length = round(0.5 * tone_length / hop_size); for i = 1:length(detection_metric) if ~in_tone && detection_metric(i) > threshold tone_starts = [tone_starts; i]; in_tone = true; tone_counter = 1; elseif in_tone if detection_metric(i) <= threshold tone_counter = tone_counter + 1; if tone_counter > min_tone_length in_tone = false; end else tone_counter = 0; end end end % 提取音调片段 tones = {}; for i = 1:length(tone_starts) start_idx = (tone_starts(i) - 1) * hop_size + 1; end_idx = min(start_idx + tone_length - 1, length(signal)); if end_idx - start_idx + 1 >= 0.8 * tone_length tone_segment = signal(start_idx:end_idx); tones{end+1} = tone_segment; end end end function phone_number = robust_frequency_recognition(tones, Fs, low_freqs, high_freqs, dtmf_keys) % 改进的频率识别算法 phone_number = ''; freq_tolerance = 20; % 频率容差(Hz) for i = 1:length(tones) tone = tones{i}; % 使用改进的Goertzel算法 [detected_low, detected_high, confidence] = improved_goertzel_detection(... tone, Fs, low_freqs, high_freqs); % 基于置信度的决策 if confidence > 0.7 digit = map_frequencies_to_digit(detected_low, detected_high, ... low_freqs, high_freqs, dtmf_keys, freq_tolerance); phone_number = [phone_number, digit]; else phone_number = [phone_number, '?']; % 无法识别的音调 end end end function [low_freq, high_freq, confidence] = improved_goertzel_detection(signal, Fs, low_freqs, high_freqs) % 改进的Goertzel频率检测 N = length(signal); % 检测低频组 low_results = zeros(length(low_freqs), 2); for i = 1:length(low_freqs) k = round(low_freqs(i) * N / Fs); magnitude = goertzel(signal, k); low_results(i, :) = [low_freqs(i), magnitude]; end % 检测高频组 high_results = zeros(length(high_freqs), 2); for i = 1:length(high_freqs) k = round(high_freqs(i) * N / Fs); magnitude = goertzel(signal, k); high_results(i, :) = [high_freqs(i), magnitude]; end % 寻找主要频率成分 [low_freq, low_conf] = find_dominant_frequency(low_results); [high_freq, high_conf] = find_dominant_frequency(high_results); % 综合置信度 confidence = (low_conf + high_conf) / 2; end function [dominant_freq, confidence] = find_dominant_frequency(freq_results) % 寻找主导频率并计算置信度 magnitudes = freq_results(:, 2); max_mag = max(magnitudes); mean_mag = mean(magnitudes); % 找到最大幅度对应的频率 [~, idx] = max(magnitudes); dominant_freq = freq_results(idx, 1); % 计算置信度:基于信噪比 if max_mag > 0 snr_ratio = (max_mag - mean_mag) / max_mag; confidence = max(0, min(1, snr_ratio * 2)); else confidence = 0; end end function magnitude = goertzel(signal, k) % Goertzel算法实现 N = length(signal); w = 2 * pi * k / N; cosine = cos(w); coeff = 2 * cosine; s_prev = 0; s_prev2 = 0; for i = 1:N s = signal(i) + coeff * s_prev - s_prev2; s_prev2 = s_prev; s_prev = s; end real_part = s_prev - s_prev2 * cosine; imag_part = s_prev2 * sin(w); magnitude = sqrt(real_part^2 + imag_part^2) / N; end function digit = map_frequencies_to_digit(low_freq, high_freq, low_freqs, high_freqs, dtmf_keys, tolerance) % 将频率映射到数字,考虑容差 % 找到最接近的低频 [~, low_idx] = min(abs(low_freqs - low_freq)); closest_low = low_freqs(low_idx); % 找到最接近的高频 [~, high_idx] = min(abs(high_freqs - high_freq)); closest_high = high_freqs(high_idx); % 检查频率是否在容差范围内 if abs(closest_low - low_freq) <= tolerance && abs(closest_high - high_freq) <= tolerance digit = dtmf_keys(low_idx, high_idx); else digit = '?'; end end function display_final_results(results, clean_signal) % 显示最终结果 figure('Position', [100, 100, 1000, 600]); % 显示原始信号 subplot(2,1,1); t = (0:length(clean_signal)-1) / 44100; plot(t, clean_signal); title('原始DTMF信号'); xlabel('时间 (s)'); ylabel('幅度'); grid on; % 显示识别结果表格 subplot(2,1,2); axis off; % 创建结果表格 result_text = sprintf('=== DTMF电话号码识别结果 ===\n\n'); result_text = [result_text, sprintf('%-8s %-15s\n', '信噪比(dB)', '识别结果')]; result_text = [result_text, sprintf('%-8s %-15s\n', '---------', '----------')]; for i = 1:size(results, 1) result_text = [result_text, sprintf('%-8d %-15s\n', results{i,1}, results{i,2})]; end text(0.1, 0.9, result_text, 'FontName', 'Courier New', 'FontSize', 12, ... 'VerticalAlignment', 'top'); fprintf('\n%s', result_text); end % 运行改进的主函数 dtmf_phone_recognition_improved();在上面的代码的基础上提供抗信噪比,使在最小-30dB下,仍能提取出原号码13108363851
10-27
if __name__ == "__main__": if df.empty: print("数据未加载,程序退出。") exit() print("\n" + "="*60) print("开始执行核心App交叉验证流程") print("="*60 + "\n") # 1. 特征准备 missing_features = [f for f in SELECTED_FEATURES if f not in X.columns] if missing_features: print(f"警告: {len(missing_features)} 个特征在数据集中不存在,将被忽略。") SELECTED_FEATURES = [f for f in SELECTED_FEATURES if f in X.columns] print(f"实际使用特征数: {len(SELECTED_FEATURES)}") # 2. 执行交叉验证 (接收三个返回值) all_results, all_importances, round_results = run_core_app_cv( models_to_run=SELECTED_MODELS, X=X, y_encoded=y_encoded, df=df, selected_features=SELECTED_FEATURES, label_encoder=label_encoder ) # 3. 结果保存与分析 final_metrics = {} for model_name, results in all_results.items(): print(f"\n正在处理 {model_name} 的结果分析...") metrics = save_results(model_name, results, RESULTS_DIR, confidence_threshold=0.9) # 保存特征重要性 if model_name in all_importances: save_feature_importance(model_name, all_importances[model_name], RESULTS_DIR) final_metrics[model_name] = metrics print(f"[{model_name}] 总体准确率: {metrics['overall_accuracy']:.4f}") print(f"[{model_name}] 高置信度准确率: {metrics['high_confidence_accuracy']:.4f}") # === 汇总并保存所有模型的每轮结果 === # 收集所有模型的每轮结果 all_round_results = [] for model_name, results_list in round_results.items(): all_round_results.extend(results_list) # 转换为DataFrame并保存 df_round_results = pd.DataFrame(all_round_results) # 重新排序列 column_order = [ 'model', 'app_core', 'app_name', 'round', 'num_samples', 'accuracy', 'true_labels', 'pred_labels', 'confidences' ] df_round_results = df_round_results[column_order] # 保存每轮结果到CSV round_results_path = os.path.join(RESULTS_DIR, "all_models_round_results.csv") df_round_results.to_csv(round_results_path, index=False, encoding='utf-8-sig') print(f"\n已保存所有模型的每轮结果至: {round_results_path}") # 打印简要汇总 print("\n模型每轮表现汇总:") print(df_round_results[['model', 'app_name', 'accuracy', 'num_samples']].groupby(['model', 'app_name']).mean()) print("\n" + "="*60) print("流程执行完毕 结果保存至目录:", RESULTS_DIR) print("="*60) 我不需要每轮表现打印的这么详细,只要保存每一轮该app的准确率和样本数即可
11-27
【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值