codeforces 669E CDQ分治

Codeforces 669E CDQ分治

传送门:https://codeforces.com/problemset/problem/669/E

题意:

三个操作:

1.在第x秒插入一个值y

2.在第x秒移走一个值y

3.查询第x秒有多少个y

题解:

有版本的查询,我们很容易想到可以基于时间给他排序

cdq的写法, 基于时间排序后分为两边,左边的坐标为j ,右边的坐标为i,如果a[j].t<a[i].t,那么就可以在a[j].pos的位置 上添加a[i].val,由于只有1e5个数但是值域是1e9,很容易想到是离散话一下用位置存val,emmm常规套路了,最后根据id排个序输出答案即可,小技巧是可以把查询的op置为0,删除的op置为-1,添加的op置为1,这样我当前位置的数量就可以直接添加上op 就可以得到了

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
struct node {
    int op;
    int t, x;
    int pos, id;
} a[maxn];
vector<int> vec;
bool cmp1(node a, node b) {
    return a.t < b.t;
}
bool cmp2(node a, node b) {
    return a.id < b.id;
}
int getid(int x) {
    return lower_bound(vec.begin(), vec.end(), x) - vec.begin() + 1;
}
int num[maxn];
int ans[maxn];
void CDQ(int l, int r) {
    if(l == r)return;
    int mid = (l + r) / 2;
    CDQ(l, mid);
    CDQ(mid + 1, r);
    sort(a + l, a + mid + 1, cmp1);
    sort(a + mid + 1, a + r + 1, cmp1);
    int j = l;
    for(int i = mid + 1; i <= r; i++) {
        while(j <= mid && a[j].t <= a[i].t) {
            num[a[j].pos] += a[j].op;
            j++;
        }
        if(a[i].op == 0)ans[a[i].id] += num[a[i].pos];
    }
    for(int i = l; i < j; i++)num[a[i].pos] -= a[i].op;
}

int main() {
    int n;
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) {
        scanf("%d%d%d", &a[i].op, &a[i].t, &a[i].x);
        if(a[i].op == 2) a[i].op = -1;
        if(a[i].op == 3) a[i].op = 0;
        a[i].id = i;
        vec.push_back(a[i].x);
    }
    sort(vec.begin(), vec.end());
    vec.erase(unique(vec.begin(), vec.end()), vec.end());
    for(int i = 1; i <= n; i++)    a[i].pos = getid(a[i].x);
    CDQ(1, n);
    sort(a + 1, a + n + 1, cmp2);
    for(int i = 1; i <= n; i++)if(a[i].op == 0)printf("%d\n", ans[i]);
}

转载于:https://www.cnblogs.com/buerdepepeqi/p/11182861.html

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值