过拟合问题是什么?

为了得到一致假设而使假设变得过度严格,称为过拟合。

避免过拟合,是分类器设计中的一个核心任务。

通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

想象某种学习算法产生了一个过拟合分类器,这个分类器能够百分之百的正确分类样本数据,为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规格如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别。

(a)中虽完全拟合了样本数据,但在(b)中使用该分类器对测试数据分类准确度很差。

(c)中虽没有完全拟合样本数据,但在(d)中使用该分类器对测试数据分类准确度却很高。

 

过拟合问题出现,往往是由于训练样本数据太少等原因造成的。

 

转载于:https://www.cnblogs.com/lgdblog/p/6757758.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值