poj 2377 Bad Cowtractors

本文介绍了一个有趣的算法问题——BadCowtractors,该问题是关于如何构造成本最高的网络连接方案,同时确保所有节点间能互相通信且不形成环路。这实际上是一个最大生成树问题的变种。文章提供了完整的AC代码实现,并采用了优先队列配合Prim算法来解决这个问题。
Bad Cowtractors
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 17411 Accepted: 7059

Description

Bessie has been hired to build a cheap internet network among Farmer John's N (2 <= N <= 1,000) barns that are conveniently numbered 1..N. FJ has already done some surveying, and found M (1 <= M <= 20,000) possible connection routes between pairs of barns. Each possible connection route has an associated cost C (1 <= C <= 100,000). Farmer John wants to spend the least amount on connecting the network; he doesn't even want to pay Bessie. 

Realizing Farmer John will not pay her, Bessie decides to do the worst job possible. She must decide on a set of connections to install so that (i) the total cost of these connections is as large as possible, (ii) all the barns are connected together (so that it is possible to reach any barn from any other barn via a path of installed connections), and (iii) so that there are no cycles among the connections (which Farmer John would easily be able to detect). Conditions (ii) and (iii) ensure that the final set of connections will look like a "tree".

Input

* Line 1: Two space-separated integers: N and M 

* Lines 2..M+1: Each line contains three space-separated integers A, B, and C that describe a connection route between barns A and B of cost C.

Output

* Line 1: A single integer, containing the price of the most expensive tree connecting all the barns. If it is not possible to connect all the barns, output -1.

Sample Input

5 8
1 2 3
1 3 7
2 3 10
2 4 4
2 5 8
3 4 6
3 5 2
4 5 17

Sample Output

42

Hint

OUTPUT DETAILS: 

The most expensive tree has cost 17 + 8 + 10 + 7 = 42. It uses the following connections: 4 to 5, 2 to 5, 2 to 3, and 1 to 3.

Source

 
思路:最小生成树
AC代码:
#include <iostream>
#include<algorithm>
#include<vector>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
#define N_MAX 1010
#define INF 0x3f3f3f3f
typedef long long ll;
struct edge{
   int to,cost;
   edge(int to=0,int cost=0):to(to),cost(cost){}
};
struct P{
   int first,second;
   P(int first=0,int second=0):first(first),second(second){}
   bool operator < (const P &b)const{
      return first>b.first;
   }
};
vector<edge>G[N_MAX];
int d[N_MAX],vis[N_MAX];
int n,m;ll tot=0;
void init(int n){
  for(int i=0;i<n;i++)G[i].clear();
  memset(d,INF,sizeof(d));
  memset(vis,0,sizeof(vis));
  tot=0;
}
void prim(int s){
  priority_queue<P>que;
  que.push(P(0,s));
  d[s]=0;
  while(!que.empty()){
     P p=que.top();que.pop();
     int v=p.second;
     if(d[v]<p.first)continue;
     if(!vis[v]){tot+=d[v];vis[v]=true;}
     for(int i=0;i<G[v].size();i++){
         edge e=G[v][i];
         if(d[e.to]>e.cost){
            d[e.to]=e.cost;
            que.push(P(d[e.to],e.to));
         }
     }
  }
}
int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
            init(n);
        for(int i=0;i<m;i++){
          int from,to,cost;scanf("%d%d%d",&from,&to,&cost);from--,to--;
          cost=-cost;
          G[from].push_back(edge(to,cost));
          G[to].push_back(edge(from,cost));
        }
        prim(0);
        bool flag=1;
        for(int i=0;i<n;i++){
            if(!vis[i]){flag=0;break;}
        }
        if(flag)
        printf("%lld\n",-tot);
        else puts("-1");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/ZefengYao/p/8809927.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值