题目:Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7]
and target 7
,
A solution set is:
[ [7], [2, 2, 3] ]
题意及分析:给出一个数组和一个目标量target,求出由数组元素组成的数组和等于target的所有可能(数组中的元素可以复用),数组所有元素都为正整数,不能包含相同的数组。这道题要求出所有可能,所以可以使用回溯的方法。我们用一个start变量存储子数组开始的位置,用int remian保留target减去当前求值数组的和,这样我们就可以转化为 在start和candidates.length-1中求 和等于target的数组。理解不够深入,讲得不是很清楚,具体可以看一下代码。。
代码:
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
List<Integer> array= new ArrayList<>();
List<List<Integer>> list = new ArrayList<>();
int start=0;
int remain=target;
backTracking(list,array,candidates,start,remain);
return list;
}
public void backTracking(List<List<Integer>> list,List<Integer> array,int[] candidates,int start,int remain) {
if(remain<0)
return;
else if(0==remain){ //有解
list.add(new ArrayList<>(array));
}else{
for(int i=start;i<candidates.length;i++){
if(i>0&&candidates[i]==candidates[i-1]) continue; //这一步操作主要是去重
array.add(candidates[i]);
backTracking(list, array, candidates, i, remain-candidates[i]); //这里注意一下是i,因为元素可以重复利用
array.remove(array.size()-1);
}
}
return;
}
}