方差分析法

本文介绍了单因子方差分析法在MATLAB中的实现,包括原理、数据准备、统计分析变量、方差分析表的构建以及显著性确定。通过MATLAB的anova和multcompare函数进行F检验和多重比较检验,用于特征有效性分析和分类器设计。

前言

工程实现的过程中需要对提取的特征指标进行有效性分析,评价各个特征指标与分类器不同类别的显著性关系,筛选出对不同类别判别贡献率最佳的指标,为设计分类器等提供支持。

本文主要针对单因子方差分析法。

实现步骤

1.方差分析法的原理;

2.数据准备;

3.单因子方差分析法的matlab实现;

4.特征的多重比较检验;

实现过程

1. 方差分析法的原理;

 方差分析法(Analysis of Variance, ANOVA)又称为F检验或者变异数分析,其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否具有统计学意义。

1.1 方差齐性检验的必要性

方差分析的F检验是以各个实验组内总体方差齐性为前提的,因此,应该先要对各个实验组内的总体方差进行齐性检验。如果各个组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个组内总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。

进行方差分析需要首先进行方差齐性检验,即若组间方差不齐则不适用方差分析,但可以通过对数变换、倒数变换等方法变换后再进行方差齐性检验,若还不行只能进行参数检验,不过一般认为,如果各组参数相若,就算未能通过方差齐性检验,问题也不大。

方差齐性检验也成为Levene检验,主要用于检验两个或多个样本之间的方差是否齐性,要求样本为随机样本且相互独立。

1.2 方差分析的条件

1)可比性:若各组均数本身不具有可比性则不适用方差分析;

2)正态性:偏态分布数据不适用,可使用変量変换方法变为正态或近似正态分布再进行方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值