Python数据挖掘——数据预处理

本文探讨数据预处理在Python数据挖掘中的核心作用,包括数据质量评估、数据清理、集成、归约及变换等关键步骤。深入讲解缺失值、噪声数据处理策略,以及数据清洗、集成和归约的技术细节。

Python数据挖掘——数据预处理

  • 数据预处理

    • 数据质量

      • 准确性、完整性、一致性、时效性、可信性、可解释性

    • 数据预处理的主要任务

      • 数据清理

      • 数据集成

      • 数据归约

        • 维归约

        • 数值归约

      • 数据变换

        • 规范化

        • 数据离散化

        • 概念分层产生

  • 数据清理(试图填充缺失的值,光滑噪声并识别离群点,纠正数据的不一致)

    • 缺失值

      • 忽略元组

      • 人工填写缺失值

      • 使用一个全局常量填充缺失值

      • 使用属性的中心度量(均值/中位数)填充缺失值

      • 使用与给定元组属于同一类的所有样本的均值/中位数

      • 使用最可能的值 填充缺失值

      • 注:某些情况,缺失值并不代表错误

    • 噪声数据(噪声是被测量的变量的随机误差或方差)

      • 分箱(通过考察数据的近邻,来光滑有序数据值)

        • 用箱均值

        • 用箱中位数

        • 用箱边界

      • 回归

      • 离群点分析(通过聚类来检测离群点)

    • 数据清理化为一个过程

      • 首先进行偏差检测,还要防止字段过载

        • 唯一性规则

        • 连续性规则

        • 空值规则

      • 偏差检测商业工具

        • 数据清洗工具

        • 数据审计工具

      • 数据迁移工具

        • EIL工具

  • 数据集成

    • 实体识别问题

    • 冗余和相关分析

    • 元组重复

    • 数据值冲突的检测与处理

  • 数据归约

    • 数据变换与数据离散化

转载于:https://www.cnblogs.com/oceaneyes-gzy/p/10422043.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值