深入浅出通信原理连载22-40(Python代码版)

本博客深入浅出地讲解了通信原理的关键概念和技术,包括信号调制、IQ调制、OFDM、CDMA、PSK调制等。通过Python代码演示了QPSK调制过程,解析了8PSK和16QAM的调制方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深入浅出通信原理Python代码版

深入浅出通信原理是陈爱军的心血之作,于通信人家园连载,此处仅作python代码笔记训练所用
陈老师的连载从多项式乘法讲起,一步一步引出卷积、傅立叶级数展开、旋转向量、三维频谱、IQ调制、数字调制等一系列通信原理知识

连载27 信号调制的意义

无线通信系统是空间辐射的方式传送信号的,而现有天线大都是全向天线,天线尺寸\(l\)大于被辐射波长\(\lambda\)十分之一时方能被有效辐射。通常来说需1/4才能达到较好的接收效果。因此调制后的信号的频率升高波长变短,从而大大降低对天线的需求。

\[ \lambda=\frac{c}{f}\\ l>=\frac{1}{10}\lambda \]

连载24-26: IQ信号调制解调

IQ调制(正交调制)即I路与Q路分别输入两个数据a,b,I路与cos\(w_0\)相乘,Q路与\(-sin\omega_0\)相乘,再将IQ两路叠加,最后获得的信号\(s(t)=acosw_ot-bsinw_0t\)

通常将输入信号以复数a+bj表示,乘上\(e^{jw_0t}\)再取实部便得到

以下图均引自陈老师通信人家园论坛帖子

IQ实信号

IQ解调


IQ调制复数形式

IQ解调复数形式

连载28 IQ调制称正交调制的原因

IQ信号被调制到了一对正交的载波上。

正弦波与余弦波在一个周期内积分是0

正弦波、余弦波与自身的乘积在一个周期T内积分大于0

\[ \frac{2}{T}\int_{-T/2}^{T/2}\cos\omega_0t\sin\omega_0tdt=0 \\ \frac{2}{T}\int_{-T/2}^{T/2}\cos\omega_0t\cos\omega_0tdt =\frac{2}{T}\int_{-T/2}^{T/2}\left[\frac{1}{2}(1-\cos2\omega_0t)\right]dt =1 \]

同样,余弦函数集合{\(coswt,2coswt,3coswt,\cdots\)}及正弦函数集合亦具有正交性

  1. 任意一个余弦(正弦)函数的平方在基波周期\(T={2\pi}/{\omega_0}\)内积分大于0
  2. 任意两个余弦(正弦)函数(不含自身)的乘积在基波周期内积分等于0

正弦函数与余弦函数之间的正交性:

  • 余弦函数集合{\(coswt,2coswt,3coswt,\cdots\)}任一函数与正弦函数集合{\(\sin\omega_0,2sinw_0,3sinw_0,\cdots\)}任一函数的乘积在基波周期内积分为0

\[ \frac{2}{T}\int_{-T/2}^{T/2}\cos m\omega_0t\cos m\omega_0tdt =\frac{2}{T}\int_{-T/2}^{T/2}\left[\frac{1}{2}(1-\cos2m\omega_0t)\right]dt =1\\ \frac{2}{T}\int_{-T/2}^{T/2}\sin m\omega_0t\sin m\omega_0tdt =\frac{2}{T}\int_{-T/2}^{T/2}\left[\frac{1}{2}(1-\sin2m\omega_0t)\right]dt =1\\ \int_{-T/2}^{T/2}\cos m\omega_0t \cos n\omega_0tdt=0 \quad (m!=n)\\ \int_{-T/2}^{T/2}\sin m\omega_0t \sin n\omega_0tdt=0\\ \int_{-T/2}^{T/2}\cos m\omega_0t \sin n\omega_0tdt=0 \]

连载30 OFDM框图

该图n个子载波,承载2n个bit

OFDM调制
\[ \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix} \]

连载22-23 CDMA

Walsh Code:
\[ W^+= \begin{bmatrix} +1 \quad +1 \quad +1 \quad +1\\ +1 \quad-1 \quad +1 \quad-1\\ +1 \quad+1\quad-1\quad -1\\ +1\quad-1\quad-1 \quad+1 \end{bmatrix} \]

不同行的WAlsh码相乘,再在一个周期T内积分,结果是0

同行Walsh码相乘再在一个周期内积分所得结果是T

CDMA编解码过程:

CDMA

CDMA中要借助导频(实质上就是m序列)来实现同步,确保walsh码能够对齐,walsh码间保持正交关系。

连载34 PSK调制

PSK(Phase Shift Keying)通过不同载波相位来表征不同比特

BPSK:所得信号 \(\cos\omega t\) 对应比特0,\(\cos(\omega t+\pi)\)对应比特1

QPSK:用4个相位表示00,01,10,11

8PSK: 输入001输出\(\cos(wt+\pi/8)\),8个相位表示三个比特

采用IQ调制实现QPSK:

IQ调制实现QPSK

QPSK对应星座图:

QPSK星座图

折叠代码块
 
```python
# 连载36:QPSK time doamin waveform
t = np.arange(0,8.5,0.5)
# input
plt.subplot(4,1,1)
y1 = [0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
plt.plot(t,y1,drawstyle='steps-post')
plt.xlim(0,8)
plt.ylim(-0.5,1.5)
plt.title('Input Signal')

# I Signal
plt.subplot(4,1,2)
a = 1/np.sqrt(2)
tI = np.arange(0,9,1)
yI = [-a,a,-a,a,-a,a,-a,a,a]
plt.plot(tI,yI,drawstyle='steps-post')
plt.xlim(0,8)
plt.ylim(-2,2)
plt.title('I signal')

# Q signal
plt.subplot(4,1,3)
yQ = [a,-a,-a,a,a,-a,-a,a,a]
plt.plot(tI,yQ,drawstyle='steps-post')
plt.xlim(0,8)
plt.ylim(-1,1)
plt.title('Q Signal')

# QPSK signal
plt.subplot(4,1,4)
t = np.arange(0,9.,0.01)
def outputwave(I,Q,t):
    rectwav = []
    for i in range(len(I)):
        t_tmp = t[((i)*100):((i+1)*100)]
        yI_tmp = yI[i]*np.ones(100)
        yQ_tmp = yQ[i]*np.ones(100)
        wav_tmp = yI_tmp*np.cos(2*np.pi*5*t_tmp)-yQ_tmp*np.sin(2*np.pi*5*t_tmp)
        rectwav.append(wav_tmp)
    return rectwav
rectwav = outputwave(yI,yQ,t)
plt.plot(t,np.array(rectwav).flatten())
plt.xlim(0,8)
plt.ylim(-2,2)
plt.title('QPSK Signal')

plt.tight_layout()
plt.show()
```
  

QPSK调制时域波形

QPSK的映射关系由格雷码决定,即减小误比特率

十进制数自然二进制数格雷码
0000000
1001001
2010011
3011010
4100110
5101111
6110101
7111100

连载39: 8PSK

8PSK星座图

8PSK映射关系

连载40: 16QAM

16QAM constellation

16QAM 映射关系

前面讲的PSK调制(QPSK、8PSK),星座图中的点都位于单位圆上,模相同(都为1),只有相位不同。而QAM调制星座图中的点不再位于单位圆上,而是分布在复平面的一定范围内,各点如果模相同,则相位必不相同,如果相位相同则模必不相同。星座图中点的分布是有讲究的,不同的分布和映射关系对应的调制方案的误码性能是不一样的

由于部分图片显示不出,故贴上Github地址备用

转载于:https://www.cnblogs.com/WindyZ/articles/ComminicationTheroy22_40.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值