P1336 最佳课题选择

本文介绍了一个关于如何最优分配论文写作任务的算法问题。Matrix67需要完成n篇论文,从m个课题中选择。通过动态规划算法确定了每个课题的最佳分配数量,以确保整体工作量最小。

 P1336 最佳课题选择

题目描述

Matrix67要在下个月交给老师n篇论文,论文的内容可以从m个课题中选择。由于课题数有限,Matrix67不得不重复选择一些课题。完成不同课题的论文所花的时间不同。具体地说,对于某个课题i,若Matrix67计划一共写x篇论文,则完成该课题的论文总共需要花费Ai*x^Bi个单位时间(系数Ai和指数Bi均为正整数)。给定与每一个课题相对应的Ai和Bi的值,请帮助Matrix67计算出如何选择论文的课题使得他可以花费最少的时间完成这n篇论文。

输入输出格式

输入格式:

 

第一行有两个用空格隔开的正整数n和m,分别代表需要完成的论文数和可供选择的课题数。

以下m行每行有两个用空格隔开的正整数。其中,第i行的两个数分别代表与第i个课题相对应的时间系数Ai和指数Bi。

 

输出格式:

 

输出完成n篇论文所需要耗费的最少时间。

 

输入输出样例

输入样例#1:
10 3
2 1
1 2
2 1
输出样例#1:
19

说明

【样例说明】

4篇论文选择课题一,5篇论文选择课题三,剩下一篇论文选择课题二,总耗时为2*4^1+1*1^2+2*5^1=8+1+10=19。可以证明,不存在更优的方案使耗时小于19。

【数据规模与约定】

对于30%的数据,n<=10,m<=5;

对于100%的数据,n<=200,m<=20,Ai<=100,Bi<=5。

分析:f[i]到第i个课题时最小价值。状态转移方程:f[j] = min(f[j-k]+a[i]*pow(k,b[i]),f[j]);

注意:1、求最小值,读好题目;2、j需要从大往小枚举,这一点和背包问题一样;3、pow返回double型,double pow(double a, double b);为了避免这个类型的问题,采用了宏定义。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<cmath>
 4 #define min(a,b) a<=b?a:b
 5 
 6 int n,m;
 7 int f[210],a[210],b[210];
 8 
 9 int main()
10 {
11     scanf("%d%d",&n,&m);
12     for (int i=1; i<=m; ++i)
13         scanf("%d%d",&a[i],&b[i]);
14     memset(f,0x3f,sizeof(f));
15     f[0] = 0;
16     for (int i=1; i<=m; ++i)
17     {
18         for (int j=n; j>=1; --j)
19         {
20             for (int k=0; k<=j; ++k)
21             {
22                 f[j] = min(f[j-k]+a[i]*pow(k,b[i]),f[j]);
23             }
24         }
25     }
26     printf("%d",f[n]);
27     return 0;
28 }

 

转载于:https://www.cnblogs.com/mjtcn/p/7100434.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值