《机器学习技法》---soft-margin SVM

本文介绍了软间隔支持向量机(Soft-SVM)的基本形式及推导过程,包括拉格朗日函数、对偶问题的建立与求解,以及在Soft-SVM中出现的三类向量。此外还讨论了如何通过留一交叉验证来评估模型。

1. soft-margin SVM的形式

 其中ξn表示每个点允许的犯错程度(偏离margin有多远),但是犯错是有代价的,也就是目标函数里面要最小化的。c控制对犯错的容忍程度。

 

2. 推导soft SVM的对偶问题

首先写出拉格朗日函数:

可以推导出对偶问题为:

即:

最优解满足KKT条件:

代入后可以将贝塔消去,ξ消去:

因此,对偶问题基本和原来相似:

 

3. 解 soft SVM问题

如何求b?需要找到阿尔法大于零小于C的那些向量,称为free向量:

 

 

4. soft-margin SVM中的三类向量

 

5. SVM中的留一交叉验证

未完持续

 

转载于:https://www.cnblogs.com/coldyan/p/6158332.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值