zoj_3367Connect them

本文介绍了一个计算机网络连接问题,通过使用最小生成树算法找到连接所有计算机的最经济方式。文章提供了一段C++代码实现,该算法首先读取输入的计算机数量及连接成本,然后通过排序和并查集的方法来找出成本最低的连接方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Connect them

Time Limit: 1 Second      Memory Limit: 32768 KB

You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers i and j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.

Given n and each cij , find the cheapest way to connect computers.

Input

There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.

The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these nlines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cjicii = 0, 1 <= ij <= n.

Output

For each test case, if you can connect the computers together, output the method in in the following fomat:

i1 j1 i1 j1 ......

where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.

Sample Input

2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0

Sample Output

1 2 1 3
-1

Hints:
A solution A is a line of p integers: a1a2, ...ap.
Another solution B different from A is a line of q integers: b1b2, ...bq.
A is lexicographically smaller than B if and only if:
(1) there exists a positive integer r (r <= pr <= q) such that ai = bi for all 0 < i < r and ar < br 
OR
(2) p < q and ai = bi for all 0 < i <= p

新学到的,按照字典序输出最小生成树
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
#pragma warning(disable : 4996)
#define MAX 100000
typedef struct edge
{
	int x, y;
	int w;
}edge;

edge e[MAX], path[MAX];
int father[MAX], ranks[MAX];

bool cmp1(edge a,edge b)
{
	if(a.w != b.w)
	{
		return a.w < b.w;
	}
	else if(a.x != b.x)
	{
		return a.x < b.x;
	}
	else
	{
		return a.y < b.y;
	}
}

bool cmp2(edge a, edge b)
{
	if(a.x != b.x)
	{
		return a.x < b.x;
	}
	else
	{
		return a.y < b.y;
	}
}

void Make_Set(int n)
{
	for(int i = 1; i <= n; i++)
	{
		father[i] = i;
		ranks[i] = 0;
	}
}

int Find_Set(int x)
{
	if(x != father[x])
		father[x] = Find_Set(father[x]);
	return father[x];
}

void Merge_Set(int x, int y)
{
	x = Find_Set(x);
	y = Find_Set(y);
	if(x == y) return;
	if(ranks[x] > ranks[y])
	{
		father[y] = x;
	}
	else if(ranks[x] < ranks[y])
	{
		father[x] = y;
	}
	else 
	{
		ranks[y]++;
		father[x] = y;
	}
}

int main()
{
	freopen("in.txt", "r", stdin);
	int t, n, value, count, x, y, cnt;
	scanf("%d", &t);
	while (t--)
	{
		count = 0;
		scanf("%d", &n);
		Make_Set(n);
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= n; j++)
			{
				scanf("%d", &value);
				if(i == j || value == 0)
				{
					continue;
				}
				e[count].x = i;
				e[count].y = j;
				e[count++].w = value;
			}	
		}
		sort(e, e + count, cmp1);
		cnt = 0;
		for (int i = 0; i < count; i++)
		{
			x = Find_Set(e[i].x);
			y = Find_Set(e[i].y);
			if(x != y)
			{
				path[cnt++] = e[i];
				Merge_Set(x, y);
			}
		}
		if(cnt != n - 1)
		{
			printf("-1\n");
		}
		else
		{
			sort(path, path + cnt, cmp2);
			for (int i = 0; i < cnt - 1; i++)
			{
				printf("%d %d ", path[i].x, path[i].y);
			}
			printf("%d %d\n", path[cnt-1].x, path[cnt-1].y);
		}
	}
	return 0;
}



转载于:https://www.cnblogs.com/lgh1992314/archive/2013/06/04/5834983.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值