HDU 2586 + HDU 4912 最近公共祖先

本文提供了一个LCA(最近公共祖先)算法的模板,并通过两个实例问题展示了如何使用该算法来解决路径选取问题。具体地,第一个问题介绍了如何在给定的树形结构中寻找两点间的最近公共祖先;第二个问题进一步探讨了如何基于LCA算法,在一棵树上选择尽可能多的互不相交路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先给个LCA模板

HDU 1330(LCA模板)

#include <cstdio>
#include <cstring>
#define N 40005
struct Edge{
    int x,y,d,ne;
};
Edge e[N*2],e2[N*2];
int be[N],be2[N],all,all2,n,m;
bool vis[N];
int fa[N];
int ancestor[N][3];
int dis[N];

void add(int x, int y, int d, Edge e[], int be[], int &all)
{
    e[all].y=y;e[all].x=x;e[all].d=d;
    e[all].ne=be[x];
    be[x]=all++;

    e[all].y=x;e[all].x=y;e[all].d=d;
    e[all].ne=be[y];
    be[y]=all++;
}

void init()
{
    all=all2=0;
    memset(be,-1,sizeof(be));
    memset(be2,-1,sizeof(be2));
    memset(vis,0,sizeof(vis));
    for(int i=0; i<=n; i++)
        fa[i]=i;
}

int find(int x)
{
    if(fa[x]!=x) fa[x]=find(fa[x]);
    return fa[x];
}

void tarjan(int u)
{
    vis[u]=1;
    for(int i=be2[u]; i!=-1; i=e2[i].ne)
        if(vis[e2[i].y])
            ancestor[e2[i].d][2]=find(e2[i].y);

    for(int i=be[u]; i!=-1; i=e[i].ne)
        if(!vis[e[i].y])
        {
            dis[e[i].y]=dis[u]+e[i].d;
            tarjan(e[i].y);
            fa[e[i].y]=u;
        }
}

int main()
{
    int tt;
    scanf("%d",&tt);
    while(tt--)
    {
        int x,y,d;
        scanf("%d%d",&n,&m);
        init();
        for(int i=0; i<n-1; i++)
        {
            scanf("%d%d%d",&x,&y,&d);
            add(x,y,d,e,be,all);
        }
        for(int i=0; i<m; i++)
        {
            scanf("%d%d",&x,&y);
            add(x,y,i,e2,be2,all2);
            ancestor[i][0]=x;
            ancestor[i][1]=y;
        }
        dis[1]=0;
        tarjan(1);//从根节点开始
        for(int i=0; i<m; i++)
            printf("%d\n",dis[ancestor[i][0]]+dis[ancestor[i][1]]-2*dis[ancestor[i][2]]);
    }
    return 0;
}
View Code

 

HDU 4912

Paths on the tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 428    Accepted Submission(s): 128


Problem Description
bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n.

There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.

Find the maximum number of paths bobo can pick.
 

 

Input
The input consists of several tests. For each tests:

The first line contains n,m (1≤n,m≤105). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following m lines contain 2 integers ui,vi denoting a path between vertices ui and vi (1≤ui,vi≤n).
 

 

Output
For each tests:

A single integer, the maximum number of paths.
 

 

Sample Input
3 2 1 2 1 3 1 2 1 3 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 5 6 7
 

 

Sample Output
1 2
 

贪心法,找出给定路径左右节点的最近公共祖先,按其最近公共祖先的深度从大到小插入,每次插入将其子树标记,之后若路径节点若已访问则判不可行,否则ans+1

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define max(x,y) ((x)>(y)?(x):(y))
#define NN 200002 // number of house
using namespace std;

int be[NN],all,ans;
bool vis2[NN],vis3[NN];

typedef struct node{
    int v;
    int d;
    struct node *nxt;
}NODE;

struct edge{
    int u,v,ne;
}e[NN];

NODE *Link1[NN];
NODE edg1[NN * 2]; 

NODE *Link2[NN];
NODE edg2[NN * 2]; 

int idx1, idx2, N, M;
int res[NN][3]; 
int fat[NN];
int vis[NN];
int dis[NN];

void Add(int u, int v, int d, NODE edg[], NODE *Link[], int &idx){
    edg[idx].v = v;
    edg[idx].d = d;
    edg[idx].nxt = Link[u];
    Link[u] = edg + idx++;

    edg[idx].v = u;
    edg[idx].d = d;
    edg[idx].nxt = Link[v];
    Link[v] = edg + idx++;
}

int find(int x){ 
    if(x != fat[x]){
        return fat[x] = find(fat[x]);
    }
    return x;
}

void Tarjan(int u){
    vis[u] = 1;
    fat[u] = u;

    for (NODE *p = Link2[u]; p; p = p->nxt){
        if(vis[p->v]){
            res[p->d][2] = find(p->v); 
        }
    }

    for (NODE *p = Link1[u]; p; p = p->nxt){
        if(!vis[p->v]){
            dis[p->v] = dis[u] + p->d;
            Tarjan(p->v);
            fat[p->v] = u;
        }
    }
}

void add(int fa,int x,int y)
{
    ++all;
    e[all].u=x;
    e[all].v=y;
    e[all].ne=be[fa];
    be[fa]=all;
}

void color(int u)
{
    for (NODE *p = Link1[u]; p; p = p->nxt)
        if(vis3[p->v] && !vis2[p->v])
        {
            vis2[p->v]=1;
            color(p->v);
        }
}

void dfs(int u)
{
    vis[u]=1;
    for (NODE *p = Link1[u]; p; p = p->nxt)
        if(!vis[p->v])    dfs(p->v);

    for (int i=be[u]; i!=-1; i=e[i].ne)
        if(!vis2[e[i].u] && !vis2[e[i].v])
        {
            vis2[u]=1;
            ans++;
            color(u);
        }
    vis3[u]=1;

}

int main() {
    int T, i, u, v, d;
    while(scanf("%d%d", &N, &M)!=EOF)
    {
        idx1 = 0;
        memset(Link1, 0, sizeof(Link1));
        for (i = 1; i < N; i++){
            scanf("%d%d", &u, &v);
            d=0;
            Add(u, v, d, edg1, Link1, idx1);
        }

        idx2 = 0;
        memset(Link2, 0, sizeof(Link2));
        for (i = 1; i <= M; i++){
            scanf("%d%d", &u, &v);
            Add(u, v, i, edg2, Link2, idx2);
            res[i][0] = u;
            res[i][1] = v;
        }

        memset(vis, 0, sizeof(vis));
        dis[1] = 0;
        Tarjan(1);

        all=0;
        memset(be,-1,sizeof(be));
        memset(vis,0,sizeof(vis));
        memset(vis2,0,sizeof(vis2));
        memset(vis3,0,sizeof(vis3));
        for(int i=1;i<=M; i++)
            add(res[i][2],res[i][0],res[i][1]);
        for(int i=1; i<=N; i++)
            fat[i]=i;
        ans=0;
        dfs(1);
        printf("%d\n",ans);
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/Mathics/p/3895389.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值