POJ 2387 Til the Cows Come Home (最短路+Dijkstra)

本文介绍了一道关于寻找两点间最短路径的经典算法问题。题目背景为一头名为Bessie的奶牛需要尽快回到牛棚休息,而路径由多个地标及连接地标的双向小径构成。文章提供了一个使用Dijkstra算法的实现方案,并详细展示了如何处理重边情况,最终求得Bessie返回牛棚所需的最短距离。
Til the Cows Come Home
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 29550 Accepted: 9935

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

Source

USACO 2004 November

题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相能够抵达的,问从1到n的最短距离

解题思路:模版题,这题要注意的是有重边,dijkstra的算法须要考虑下,bellman-ford和spfa能够忽略这个问题

代码:实验证明这道题的数据临界值是1000,我开1000的dis[0]没用,就挂了。。。无语。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define M 1005
#define INF  9999999
#define min(a,b) (a<b?a:b)
int map[M][M],dis[M];
int m,n;
void Dijkstra()
{
    bool v[M];
    int Min=INF,s,i,j;
    memset(v,0,sizeof v);
    map[0][1]=map[1][0]=0;  //由于我要套模板啦,所以还是从0開始。
    for(i=0;i<=n;i++) dis[i]=(i==0?0:INF);  //白书就这么简单,不知道黄书怎么那么难。。。是等级不同吗
    for(i=0;i<=n;i++)
    {
     Min=INF;
     for(j=0;j<=n;j++)
     if(!v[j] && dis[j]<Min)
     {
     Min=dis[j];s=j;
     }
     v[s]=1;
     for(j=0;j<=n;j++)
     dis[j]=min(dis[j],dis[s]+map[s][j]);

    }
    printf("%d\n",dis[n]);
}
int main()
{
    int i,j;
    int a,b,z;
    scanf("%d%d",&m,&n);
    for(i=0;i<=n;i++)
    for(j=0;j<=n;j++)
    map[i][j]=(i==j?0:INF);
    while(m--)
    {
        scanf("%d%d%d",&a,&b,&z);
        map[a][b]=map[b][a]=min(map[a][b],z);
    }
    Dijkstra();
    return 0;
}

转载于:https://www.cnblogs.com/zfyouxi/p/4067296.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值