POJ2387 Til the Cows Come Home 最短路

本文介绍了一个经典的最短路径问题,通过Dijkstra算法解决Bessie从田野返回牛棚的最短路径问题。文章详细展示了算法实现,包括初始化、松弛操作和更新最短路径的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Til the Cows Come Home

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 91593 Accepted: 29824
Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John’s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1…N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input

  • Line 1: Two integers: T and N

  • Lines 2…T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1…100.

Output

  • Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output

90

问题连接

问题描述

有N个顶点,T条边,T行说明每条边的长度和关联的顶点。找出从顶点n到顶点1的最短路径长。

问题分析

最短路问题。用dijkstra算法做,算是模板题吧。注意题目有点坑,图有重边,构图的时候,选择最短的边。

代码如下

#include<iostream>
using namespace std;

const int N = 1e3 + 5;
const int inf = 0x3f3f3f3f;

int n;
int G[N][N];
int dist[N];
bool vis[N];

void init() {//初始化
	for (int i = 1; i <= n; i++)
		for (int j = i; j <= n; j++)
			if (i == j) G[i][i] = 0;
			else G[i][j] = G[j][i] = inf;
}

void dijkstra(int start) {
	int i, j, minn;
	for (i = 1; i <= n; i++) {
		dist[i] = G[start][i];
		vis[i] = 0;
	}
	dist[start] = 0;
	vis[start] = 1;
	for (i = 1; i < n; i++) {
		minn = inf;
		for (j = 1; j <= n; j++) {
			if (minn > dist[j]&&!vis[j]) {
				minn = dist[j];
				start = j;
			}
		}
		if (minn == inf) break;
		vis[start] = 1;
		for (j = 1; j <= n; j++)
			if (!vis[j] && dist[j] > dist[start] + G[start][j]) dist[j] = dist[start] + G[start][j];
	}
}


int main() {
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	int t, i, v, u, e;
	cin >> t >> n;
	init();
	while (t--) {
		cin >> v >> u >> e;
		if(e<G[v][u]) G[v][u] = G[u][v] = e;//处理重边
	}
	dijkstra(n);
	cout << dist[1] << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值