expectation-maximization algorithm ---- PRML读书笔记

An elegant and powerful method for finding maximum likelihood solutions for models with latent variables is called the expectation-maximization algorithm, or EM algorithm.

If we assume that the data points are drawn independently from the distribution, then the log of the likelihood function is given by

lnp(X|π,μ,Σ)=Σnln{ΣkπkN(xnkk)}

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters(comprising the means and covariances of the components

and the mixing coefficients).

1.Initialize the means μk, covariances Σk and  mixing coefficients πk, and evaluate the initial value of the log likelihood.

2.E step. Evaluate the responsibilities using the current parameter values

3.M step. Re-estimate the parameters using the current responsibilities.

4.Evaluate the log likelihood

lnp(X|π,μ,Σ)=Σnln{ΣkπkN(xnkk)}

 

转载于:https://www.cnblogs.com/donggongdechen/p/9813183.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值