codeforces 28D(dp)

探讨一种算法挑战,涉及一系列卡车车队穿越恐惧隧道的问题。司机们害怕传说中的怪物DravDe,需要通过特定条件筛选车队,确保安全通过的同时最大化剩余车辆的价值。算法需考虑每辆车的价值、乘客数及司机的恐惧指数。
D. Don't fear, DravDe is kind
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A motorcade of n trucks, driving from city «Z» to city «З», has approached a tunnel, known as Tunnel of Horror. Among truck drivers there were rumours about monster DravDe, who hunts for drivers in that tunnel. Some drivers fear to go first, others - to be the last, but let's consider the general case. Each truck is described with four numbers:

  • v — value of the truck, of its passangers and cargo
  • c — amount of passanger on the truck, the driver included
  • l — total amount of people that should go into the tunnel before this truck, so that the driver can overcome his fear («if the monster appears in front of the motorcade, he'll eat them first»)
  • r — total amount of people that should follow this truck, so that the driver can overcome his fear («if the monster appears behind the motorcade, he'll eat them first»).

Since the road is narrow, it's impossible to escape DravDe, if he appears from one side. Moreover, the motorcade can't be rearranged. The order of the trucks can't be changed, but it's possible to take any truck out of the motorcade, and leave it near the tunnel for an indefinite period. You, as the head of the motorcade, should remove some of the trucks so, that the rest of the motorcade can move into the tunnel and the total amount of the left trucks' values is maximal.

Input

The first input line contains integer number n (1 ≤ n ≤ 105) — amount of trucks in the motorcade. The following n lines contain four integers each. Numbers in the i-th line: vi, ci, li, ri (1 ≤ vi ≤ 104, 1 ≤ ci ≤ 105, 0 ≤ li, ri ≤ 105) — describe the i-th truck. The trucks are numbered from 1, counting from the front of the motorcade.

Output

In the first line output number k — amount of trucks that will drive into the tunnel. In the second line output k numbers — indexes of these trucks in ascending order. Don't forget please that you are not allowed to change the order of trucks. If the answer is not unique, output any.

Examples
input
Copy
5
1 1 0 3
1 1 1 2
1 1 2 1
1 1 3 0
2 1 3 0
output
Copy
4
1 2 3 5
input
Copy
5
1 1 0 3
10 1 2 1
2 2 1 1
10 1 1 2
3 1 3 0
output
Copy
3
1 3 5

 

/*
这道题.....雾......
就是按l+r+c分类嘛....
可是...但可是....可但是.....
算了,copycopygiveup..... 
*/

#include<bits/stdc++.h>
 
using namespace std;
const int Inf=1e9;
struct truck
{
    int v,c,l,id,sum;
    truck(int v,int c,int l,int id) : id(id), v(v), c(c), l(l) {}
};
vector<truck> t[300010];
map<int,pair<int,int> > mp;
vector<int> ans;
int Nxt[300010];
int n;
int main()
{
    scanf("%d",&n);
    for(int i=1; i<=n; i++)
    {
        int v,c,l,r ;
        scanf("%d%d%d%d",&v,&c,&l,&r);
        t[c+l+r].push_back(truck(v,c,l,i));
    }
    int res=0;
    ans.clear();
    for(int s=0; s<300010; s++)    //枚举c+l+r的长度
    {
        if(t[s].size())
        {
            mp.clear();
            int len=t[s].size();
            mp[s]=make_pair(0,Inf);
            for(int i=len-1; i>=0; i--)
            {
                int l=t[s][i].l;
                int c=t[s][i].c;
                int v=t[s][i].v;
                int cnt=l+c;
                if(mp.find(cnt)==mp.end()) continue;
                int val=v+mp[cnt].first;   //mp存储dp结果
                Nxt[i]=mp[cnt].second;
                if(mp[l].first<val)
                {
                    mp[l]=make_pair(val,i);    //人数值对应最大价值和当前vector中的编号
                }
            }
            if(res<mp[0].first)
            {
                res=mp[0].first;
                ans.clear();
                for(int i=mp[0].second; i<Inf/2; i=Nxt[i])
                {
                    ans.push_back(t[s][i].id);
                }
            }
        }
    }
    printf("%d\n",ans.size());
    for(int i=0; i<ans.size(); i++)
    {
        printf("%d",ans[i]);
        if(i!=ans.size()-1)printf(" ");
    }
    return 0;
}
 

 

 

 

转载于:https://www.cnblogs.com/L-Memory/p/9890103.html

区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值