EM算法

    算是 PRML第九章的一个笔记。如有错误的地方,欢迎指正。

1. 问题描述

   已知随机变量 XZ 具有联合分布,其中 X 是可以观测的,Z 是不可观测的(隐变量)。现在给定了 X 的观测值,要求的最大似然估计。即已知 X, 求解优化问题

EM算法是在有隐含变量存在时求参数的最大似然估计的一种优化方法。

2. EM算法的推导

    假设 Z 是离散型的随机变量(如果 Z 是连续型的随机变量,将下面推导中的求和号换为积分号即可)。记 Z 的取值空间为 ,设 q(Z) 为 空间 上的任意一个概率分布函数,则有

由于相对熵(或称 KL距离) KL(q || p)恒非负,而且满足 KL(q || p) = 0 当且仅当 q 和 p 是同一个分布,所以

 等号成立当且仅当 q ~ Z | X, θ。

    有了上述准备,我们可以阐述EM算法的基本流程了。

    牢记我们的目标:已知 X , 求使 最大的 θ(事实上,EM算法只能找到极大值点)。

    EM算法的思路是:任意给 赋一个初值  , 然后通过一个迭代过程不断的更新 ,每更新一次都保证 的值在变大,直到不能变大为止(说明已经到了一个极大值点)。

    由上面的分析得到,对于上的任意概率分布 q,恒有

当取 q 为  时等号成立,记 . 则

如果满足 , 则有

即把更新为会使得的值增加。

显然

满足

    由于

上式中第二项与 无关,因此

 

是等价的。

 

  EM算法总结如下:


1. 给定 的一个初始值

2. E-step: 计算

3. M-step: 求解优化问题

4. 检查是否收敛了,如果没有,则更新然后回到第 2 步。


  

 

转载于:https://www.cnblogs.com/ccvcgds/archive/2013/06/03/3115986.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值