Binary Tree Maximum Path Sum

本文介绍了一种使用递归方法解决二叉树最大路径和问题的算法,详细解释了如何通过节点的值及其左右子树的路径和来计算整个二叉树的最大路径和,并提供了代码实现。

Binary Tree Maximum Path Sum

Total Accepted: 55016 Total Submissions: 246213 Difficulty: Hard

Given a binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path does not need to go through the root.

For example:
Given the below binary tree,

       1
      / \
     2   3

Return 6.

 
设最大路径和为sum , 那么sum = max(sum,左子树根出发的最大路径和+根结点的值+右子树根出发的最大路径和);
根据这个式子写成递归式就可以了
有一点需要注意,如果从左右子树根出发的最大路径和为负数,那么将其值置0,因为根的值+从左右子树根出发的最大路径和 一定会小于根的值
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int maxPathSum(TreeNode *root) {
        int maxPath = INT_MIN;
        maxPathWithNode(root,maxPath);
        return maxPath;
    }
    int maxPathWithNode(TreeNode* node,int& maxPath){
        if(!node) return 0;
        int l = max(0,maxPathWithNode(node->left,maxPath));
        int r = max(0,maxPathWithNode(node->right,maxPath));
        maxPath = max(maxPath,l+r+node->val);
       // cout<<"node->val="<<node->val<<" l="<<l<<" r="<<r<<" maxPath="<<maxPath<<endl;
        return max(l,r)+node->val;
    }
};
/*
[-1,-2,-3,4,-5,-6,-7,8,-9,-1,-1,-1,-1,-1,-1,-7,-8]
[-9,-9]
*/

 

转载于:https://www.cnblogs.com/zengzy/p/5056777.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值