动态规划,最大子段和

int GetBigger(int x,int y)
{
int bigger=(x>y?x:y);
return bigger;
}

int GetMax(int a[],int n)
{
int* start=new int[n];
int* max=new int[n];
start[n-1]=a[n-1];
max[n-1]=a[n-1];
for (int i = n-2; i >=0; i--)
{
start[i]=GetBigger(a[i],start[i+1]+a[i]);//强行包括了元素i之后的最大值
max[i]=GetBigger(start[i],max[i-1]);//最终的最大值(在强行包括的最大值和不包括的最大值之间取大者)

}
return max[0];
}

转载于:https://www.cnblogs.com/YTYMblog/p/6416873.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值